

Suivi de la qualité des eaux souterraines en aval des installations classées situées dans le bassin Rhin-Meuse à l'ouest des Vosges

Synthèse des contrôles 2005

BRGM/RP-58533-FR

Octobre 2010

Étude réalisée dans le cadre des projets de Service public du BRGM 06POLA14

D. Nguyen-Thé, avec la collaboration de D. Badey, J. Hidalgo, S. Ollagnier

Vérificateur :

Nom: B. Clozel-Leloup

Date: 28/04/2010

(Original signé)

Approbateur:

Nom: D. Midot

Date: 20/05/2010

(Original signé)

En l'absence de signature, notamment pour les rapports diffusés en version numérique, l'original signé est disponible aux Archives du BRGM.

Le système de management de la qualité du BRGM est certifié AFAQ ISO 9001:2008.

Avertissement

Les fiches des sites (sur cd-rom) sont consultables auprès de l'Agence de l'Eau Rhin-
Meuse ou des DREAL Lorraine et Champagne-Ardenne.
Mots clés : installations classées pour la protection de l'environnement, sites et sols (potentiellement) pollués, qualité des eaux souterraines, bassin Rhin-Meuse, Lorraine.
En bibliographie, ce rapport sera cité de la facon suivante :

© BRGM, 2010, ce document ne peut être reproduit en totalité ou en partie sans l'autorisation expresse du BRGM.

rom.

Badey D., Hidalgo J., Nguyen-Thé D., S. Ollagnier (2010) – Suivi de la qualité des eaux souterraines en aval des installations classées situées dans le bassin Rhin-Meuse à l'ouest des Vosges, Synthèse des contrôles 2005. Rapport BRGM/RP-58533-FR, 47 p., 5 ill., 2 ann., 1 cd-

Synthèse

De nouveaux sites d'installations classées (IC) ou de sites et sols pollués (SP) ont été incorporés dans l'étude du suivi de la qualité des eaux souterraines en milieu industriel dans le bassin Rhin-Meuse à l'ouest des Vosges, portant à 129 le nombre total de sites étudiés. De nouvelles fiches de sites ont été réalisées pour les nouveaux sites, et les fiches des anciens ont été actualisées.

Les données analytiques du suivi de la qualité des eaux souterraines réalisé au cours de l'année 2005 pour les IC-SP ont été récupérées pour 69 sites répartis dans les cinq départements des Ardennes, de Meurthe-et-Moselle, de la Meuse, de la Moselle et des Vosges. Ces données ont été bancarisées dans la banque nationale ADES.

Pour établir la synthèse du suivi de la qualité des eaux souterraines, par masse d'eau, la méthode qui a été possible de mettre en œuvre a consisté à comparer succinctement les résultats analytiques aux limites et références de la qualité des eaux brutes et des eaux destinées à la consommation humaine définies dans l'arrêté ministériel du 11 janvier 2007. Des écarts ont ainsi été constatés entre les résultats et les limites ou références, sans que l'on puisse attribuer en toute objectivité l'origine de ces écarts à la présence des IC-SP. Ces résultats analytiques singuliers ont été rapportés à leurs masses d'eau souterraines.

Les écarts identifiés concernent une quarantaine de paramètres, éléments ou composés contrôlés et affectent les treize masses d'eau souterraine du « Socle ardennais », des « Grès du Trias inférieur du bassin houiller », des « Calcaires du Muschelkalk », du « Plateau Iorrain versant Rhin », des « Argiles du Lias des Ardennes », des « Calcaires du Dogger des côtes de Moselle », du « Réservoir minier - Bassin ferrifère Iorrain », des « Calcaires oxfordiens », des « Calcaires kimméridgiens-oxfordiens karstiques nord-est du district (entre Ornain et limite de district) », des « Alluvions du Perthois », des « Alluvions de la Meuse, de la Chiers et de la Bar », des « Alluvions de la Meurthe et de la Moselle en amont de la confluence avec la Meurthe » et des « Alluvions de la Moselle en aval de la confluence avec la Meurthe ».

Sommaire

1.	Intro	duction	7
2.	Syntl	nèse des données 2005	9
	2.1.	ZONE D'ETUDE	9
	2.2.	ETUDE DES DONNEES 2005	9
	2.3.	SITES ETUDIES	11
	2.4.	BILAN D'ACQUISITION DES DONNEES SUR LES SITES POUR L'ENSEMBLE DES DEPARTEMENTS	12
3.	Exan	nen par système aquifère	15
	3.1.	METHODOLOGIE	15
	3.2.	SOCLE ARDENNAIS	15
	3.3.	GRES DU TRIAS INFERIEUR	16
	3.4.	CALCAIRES DU MUSCHELKALK	16
	3.5.	PLATEAU LORRAIN VERSANT RHIN	16
	3.6.	ARGILES DU LIAS DES ARDENNES	17
	3.7.	CALCAIRES DU DOGGER ET FORMATION FERRIFERE	
	3.8.	CALCAIRES DE L'OXFORDIEN	18
	3.9.	MARNES ET CALCAIRES DE L'OXFORDIEN ET DU KIMMERIDGIEN	18
	3.10.	ALLUVIONS DE LA MEUSE, DE LA CHIERS ET DE LA BAR	18
	3.11.	ALLUVIONS DU PERTHOIS	19
	3.12.	ALLUVIONS DE LA MEURTHE ET DE LA MOSELLE AMONT	19
	3.13.	ALLUVIONS DE LA MOSELLE AVAL	19
	3.14.	BILAN DES DERIVES CONSTATEES	20
4.	Conc	lusion	21
5.	Bibli	ographie	23

Liste des illustrations

Illustration 2 : Nouveaux sites étudiés	12
Illustration 3 : Bilan d'acquisition des données pour le suivi des IC-SP	12
Illustration 4 : Rappel de la classification BASOL.	13
Illustration 5 : Liste des paramètres, éléments et composés a priori problématiques pour le contrôle des données de l'année 2005	20
Liste des annexes	
Annexe 1 : Lexique des paramètres chimiques analysés	25

des eaux brutes et des eaux destinées à la consommation humaine......37

Annexe 2 : Arrêté du 11 janvier 2007 relatif aux limites et références de qualité

1. Introduction

'Agence de l'eau Rhin-Meuse (AERM) et les Directions Régionales de l'Industrie, de la Recherche et de l'Environnement (DRIRE, devenues DREAL) Champagne-Ardenne et Lorraine, ont décidé au cours des années 1990 de faire élaborer par le BRGM un document de synthèse annuelle sur les données de la qualité des eaux souterraines en milieu industriel.

La présente synthèse, qui a été cofinancée par l'AERM, la DRIRE Lorraine et le BRGM, porte sur les données analytiques de l'année 2005. Ces données de la qualité sont principalement issues des réseaux d'autocontrôles réglementaires mis en place au droit des installations classées (IC) pour la protection de l'environnement. Elles peuvent aussi être acquises au niveau de sites et sols inscrits dans la base de données sur les sites et sols pollués ou potentiellement pollués (SP) appelant une action des pouvoirs publics, à titre préventif ou curatif, BASOL¹. La désignation IC-SP permet de regrouper sous un même sigle ces types d'installations et de sites ou sols.

BRGM/RP-58533-FR 7

_

¹ consultable sur le site internet du Ministère de l'Ecologie, de l'Energie, du Développement durable et de la Mer (MEEDDM), à l'adresse http://basol.environnement.gouv.fr.

2. Synthèse des données 2005

2.1. ZONE D'ETUDE

Les données de la qualité des eaux souterraines sont d'une part relatives aux quatre départements de la région Lorraine, à savoir la Meurthe-et-Moselle, la Meuse, la Moselle et les Vosges. D'autre part, elles concernent la partie du département des Ardennes qui est située dans le bassin Rhin-Meuse. La partie du département de la Haute-Marne appartenant au bassin Rhin-Meuse n'est pas prise en compte.

Les territoires concernés par l'étude sont présentés sur l'illustration 1 qui suit. Leur superficie totale est d'environ 26 200 km². Ils sont situés, à 78,5 %, à la fois dans le bassin hydrologique Rhin-Meuse et en Lorraine (ce qui représente environ 20 600 km²), à 10,0 %, uniquement dans le bassin Rhin-Meuse (nord-est du département des Ardennes, d'environ 2 600 km²) et à 11,5 %, uniquement en Lorraine (ouest du département de la Meuse et sud du département des Vosges hors bassin Rhin-Meuse, d'environ 3 000 km²).

Ainsi, en toute rigueur, les territoires visés par l'étude concernent trois bassins versants hydrologiques (Rhin-Meuse; Rhône-Méditerranée et Corse; Seine-Normandie) et deux régions administratives (Champagne-Ardenne; Lorraine).

2.2. ETUDE DES DONNEES 2005

Les résultats des analyses chimiques réalisées au cours de l'année 2005 par les industriels pour l'auto-surveillance de l'impact de leurs activités sur les eaux souterraines, ou ceux acquis sur des sites et sols pollués, sont transmis aux DRIRE. Le BRGM, par l'intermédiaire du Service géologique régional Lorraine, a été chargé dans le cadre de sa mission de service public, de mettre en banque ces données, puis d'élaborer un rapport annuel de synthèse du suivi de la qualité des eaux souterraines en aval des installations classées. A la différence des études antérieures, pour le présent exercice, la DRIRE Lorraine s'est chargée de transmettre directement les données de l'année 2005 sous format papier au BRGM, pour les sites de la région Lorraine. Par ailleurs, les données résultant de la surveillance des eaux souterraines qui ont été collectées de 1993 à 2004 avaient été initialement mises sur un support informatique SGBD Oracle; dans le cadre d'un autre projet, toutes ces données ont été versées dans la base publique de données ADES (Accès aux Données des Eaux Souterraines)², et les données de l'année 2005 ont ainsi pu être intégrées directement dans cette nouvelle base. Enfin, 18 nouveaux sites ont été ajoutés à l'étude par rapport à l'exercice précédent.

² http://www.ades.eaufrance.fr/

Illustration 1 : Situation de la zone étudiée (bassin Rhin-Meuse à l'ouest des Vosges et Lorraine).

L'opération s'est déroulée selon six étapes majeures :

1. Collecte des données et des informations relatives aux installations classées équipées d'un réseau de contrôle de la qualité des eaux souterraines pour le département des Ardennes. Ce travail a été effectué directement par un agent du BRGM qui a été accueilli à la subdivision de Charleville-Mézières de la DRIRE Champagne-Ardenne.

- 2. Préparation des données et saisie des analyses physico-chimiques relatives aux sites dans une base de données locale MOLOSSE servant d'interface avec la base ADES. Les analyses ont seulement été saisies dans le cas où les points de prélèvement des eaux souterraines ont été identifiés avec une précision satisfaisante. Alors, la correspondance des désignations locales des points de prélèvement a été faite avec leurs codes nationaux ou codes BSS (Banques des données du Sous-Sol). Les informations nécessaires à cette identification sont de préférence les coupes géologique et technique de l'ouvrage d'eau, ses caractéristiques hydrodynamiques, un plan de localisation du point à 1/25 000^e, et un plan de masse du site agrémenté d'un repérage en coordonnées Lambert I ou II selon le cas (ces plans ont également servi pour la tâche suivante).
- 3. **Positionnement des sites** sur des cartes de localisation (sur un fond IGN à 1/25 000°), avec la localisation des points de contrôle des eaux souterraines. Des plans de type cadastral ont parfois été fournis pour apprécier plus précisément la localisation des points de prélèvement.
- 4. Mise à jour des fiches des sites et intégration des résultats statistiques issus des analyses collectées et saisies, au cours de la deuxième tâche. Les tableaux de synthèse des résultats analytiques par point de mesure et par élément analysé (voir la liste des paramètres analysés en annexe 1) ont ainsi été mis à jour. Les fiches des sites ont été reformatées du fait de la mise en place d'une base locale FICSP de gestion des fiches, qui fait partie de la chaîne des outils du traitement et de la gestion des données disponibles avec ADES. Il convient de rappeler que les commentaires hydrogéologiques faits dans ces fiches n'ont pas vocation à se substituer à d'éventuelles études spécifiques qui pourraient être réalisées à la charge des exploitants des sites correspondants, afin que des critères de dégradation significative ou de dépassement des objectifs de la qualité des eaux souterraines soient fixés, dans le cadre de la mise en place de plans de gestion sur les sites et/ou de démarches d'interprétation de l'état des milieux (IEM).
- Réalisation de nouvelles fiches pour l'étude de 18 nouveaux sites lorrains. Les sites ont été choisis au cours de réunions de pilotage du projet par les partenaires du projet (Peixoto, 2008). L'ensemble des fiches des sites est présenté dans le volume hors texte.
- 6. Réalisation de la synthèse à l'échelle des départements et du bassin Rhin-Meuse, selon l'esprit des synthèses qui ont été faites pour le traitement des données jusqu'à l'année 2003. Les résultats analytiques qui se distinguent par rapport à certains critères de qualité ont été rapportés à leur masse d'eau souterraine.

2.3. SITES ETUDIES

Les sites étudiés pour les contrôles de l'année 2005 sont les 112 sites étudiés lors des exercices précédents (voir la synthèse des contrôles de l'année 2004), auxquels 17 nouveaux sites ont été ajoutés pour arriver à un total de 129 sites. La liste des nouveaux sites est présentée dans le tableau de l'illustration 2.

Nom	Commune
Akers	Thionville (57)
Alstom Moteurs	Nancy (54)
Ancien dépôt BP Total	Metz (57)
Ancien dépôt Marchal	Metz (57)
Ancien dépôt Perin Combustibles	Revigny-sur-Ornain (55)
Ancienne usine sidérurgique de Micheville	Villerupt (54)
Ancienne usine Thyssen	Maizières-lès-Metz (57)
Etilam	Thionville (57)
Ferco International	Réding (57)
Hoppecke	Trémont-sur-Saulx (55)
Indesit	Manom (57)
Relais Total de l'Obrion de l'A31	Loisy (54)
Scierie Bertaud et fils	Charmois-devant-Bruyères (88)
Scierie de Valfroicourt	Valfroicourt (88)
Soprodi	Hesse (57)
Trefileurope usine de Marnaval	Ancerville (55)
VB France	Sarreguemines (57)

Illustration 2 : Nouveaux sites étudiés.

2.4. BILAN D'ACQUISITION DES DONNEES SUR LES SITES POUR L'ENSEMBLE DES DEPARTEMENTS

Le bilan des données acquises pour l'exercice 2005 est dressé dans le tableau de l'illustration 3.

Département	Nombre de sites (situation 2005)	Nombre de points de contrôle (situation 2005)	Nombre de sites avec des résultats d'analyses (en 2005)*	Nombre de sites présents dans l'inventaire BASOL	Nombre de sites cotés A2 ou A3 dans l'inventaire BASOL
ARDENNES (08)	23	137	15	13	5
MEURTHE-ET- MOSELLE (54)	30	222	13	20	5
MEUSE (55)	18	80	9	8	3
MOSELLE (57)	39	395	24	28	13
VOSGES (88)	19	84	8	11	2
Total	129	908	69	80	28

Illustration 3 : Bilan d'acquisition des données pour le suivi des IC-SP, situation 2005 (* : récupérés dans le cadre de cette étude).

Pour rappel, la classification BASOL est présentée dans le tableau ci-dessous. Les sites et les installations classées sont classés en cinq catégories, en fonction des niveaux de pollution constatés (importance des concentrations des paramètres contrôlés et extension spatiale de la pollution), des actions en cours ou déjà réalisées, et du caractère seulement préventif des contrôles de la qualité des eaux souterraines. Une classe hors catégorie a aussi été ajoutée pour les sites ne relevant pas de BASOL.

A1	Site mis en sécurité et/ou devant faire l'objet d'un diagnostic
A2	Site en cours d'évaluation
А3	Site en cours de travaux
A4	Site traité avec surveillance et/ou restriction d'usage
A5	Site traité et libre de toute restriction
	Site non classé dans BASOL

Illustration 4: Rappel de la classification BASOL.

3. Examen par système aquifère

3.1. METHODOLOGIE

Dans cette partie, le bilan des contrôles 2005 du suivi de la qualité des eaux souterraines en aval des installations classées est fait à partir des résultats analytiques des 71 sites qui en disposent, qui se sont démarqués par rapport à l'arrêté du 11 janvier 2007 relatif aux limites et références de la qualité des eaux brutes et/ou des eaux destinées à la consommation humaine (voir le report de l'arrêté en annexe 2). Nous avons identifié les masses d'eau souterraine pour lesquelles les sites présentaient des résultats dépassant ces limites ou références.

Bien que cette méthode soit objective, elle ne peut tenir compte du contexte environnemental de chaque site ni des fonds géochimique ou anthropique des sites. Cet examen ne constitue ainsi qu'une première approche synthétique du suivi de la qualité des eaux souterraines dans des milieux industriels.

Aller au-delà de cette première analyse nécessiterait davantage de moyens à disposition, comme ceux qui ont été mis en œuvre pour la réalisation de la synthèse des contrôles de l'année 2004 (rapport BRGM/RP-54517-FR). Rappelons en outre qu'un avis éclairé sur l'incidence éventuelle et effective d'un site sur la qualité des eaux souterraines ne peut être produit qu'en faisant une étude détaillée spécifique à ce site et en se ramenant à l'échelle de celui-ci, étude qui est réglementairement à la charge de l'exploitant du site.

3.2. SOCLE ARDENNAIS (MASSE D'EAU DE CODE FRB1G019)

Les eaux souterraines du socle ardennais ont été contrôlées en 2005 par l'intermédiaire des réseaux de qualitomètres d'installations classées soit directement, soit indirectement à partir de piézomètres captant une petite nappe alluviale développée sur le socle ardennais et *a priori* en liaison hydraulique avec celui-ci.

Dans le premier cas, pour un site qui se trouve à Bourg-Fidèle dans le département des Ardennes, de l'arsenic a été dosé une fois à 12 µg.L⁻¹, c'est-à-dire au-dessus de la limite de la qualité des eaux destinées à la consommation humaine (de 10 µg.L⁻¹). La concentration en sulfate a atteint la valeur de 878 mg.L⁻¹. Le nickel a dépassé la limite de la qualité avec une concentration de 30 µg.L⁻¹. A noter que ce métal est classé comme une substance prioritaire dans le domaine de l'eau. Enfin, du naphtalène, qui est classé comme une substance dangereuse prioritaire dans le domaine de l'eau, a été détecté à plusieurs reprises, jusqu'à une concentration de 0,4 µg.L⁻¹.

Dans le second cas, le pH a été mesuré *in situ*, pour le suivi d'une installation située à Eteignières, à des valeurs inférieures à 6,5 qui est la limite de la qualité pour les eaux destinées à la consommation humaine, rendant compte d'eaux basiques. Le pH est descendu jusqu'à 4,6.

3.3. GRES DU TRIAS INFERIEUR (MASSE D'EAU DE CODE FRCG028)

Pour les grès du Trias inférieur de la boucle de Saint-Avold, de nombreux dépassements des limites ou références de la qualité ont été observés pour un site d'IC-SP situé à Schoeneck. La conductivité à 25 °C a atteint la valeur importante de 9310 μS.cm⁻¹, rendant compte d'eaux très minéralisées. Le pH était aussi acide (sa valeur minimale était de 5,6) et les eaux étaient sous-oxygénées. Les concentrations en ammonium, chlorure, sodium et sulfate ont dépassé les limites de la qualité pour les eaux brutes et ont atteint respectivement les valeurs de 9,9 mg.L⁻¹, 447 mg.L⁻¹, 528 mg.L⁻¹ et 7125 mg.L⁻¹. Pour les métaux et métalloïdes, des concentrations importantes en arsenic (mesuré jusqu'à 90 μg.L⁻¹), bore (3,8 mg.L⁻¹), chrome (50 μg.L⁻¹) et manganèse (22 mg.L⁻¹) ont été constatées, atteignant ou dépassant les limites et références de la qualité des eaux destinées à la consommation humaine. Du fluoranthène et du nickel, qui font partie de la liste des substances prioritaires, ont été détectés. La concentration en nickel a atteint 440 μg.L⁻¹. Du plomb a également dépassé la limite de qualité, avec 30 μg.L⁻¹ mesurés, cet élément étant aussi considéré comme une substance dangereuse prioritaire dans le domaine de l'eau.

3.4. CALCAIRES DU MUSCHELKALK (MASSE D'EAU DE CODE FRCG006)

Deux sites implantés sur les calcaires du Muschelkalk à Hesse et Sarreguemines ont présentés des résultats analytiques qui n'étaient pas conformes aux limites et références que nous utilisons ici.

Dans les eaux souterraines suivies à Hesse, des coliformes en quantités parfois importantes ont été dosés. La concentration en ammonium a été mesurée à 0,5 mg.L⁻¹, et la concentration en nitrate a atteint 65 mg.L⁻¹. Le manganèse a atteint 464 µg.L⁻¹. A Sarreguemines, le plomb qui est listé comme une substance dangereuse prioritaire a été dosé jusqu'à la concentration de 50 µg.L⁻¹.

3.5. PLATEAU LORRAIN VERSANT RHIN (MASSE D'EAU DE CODE FRCG008)

Des dérives de la qualité des eaux souterraines ont été observées lors du suivi de la masse d'eau souterraine du « Plateau lorrain versant Rhin » pratiqué à Aboncourt, Flévy, Jouy-aux-Arches, Ménarmont et Teting-sur-Nied. Les sites sont des installations de stockage de déchets (ISD).

Même si ces dérives sont typiques d'incidences d'ISD, rappelons qu'elles doivent être relativisées et qu'elles pourraient avoir une origine autre que les sites suivis, compte tenu de l'échelle de l'analyse que nous menons.

Elles concernaient l'ammonium, avec une concentration mesurée jusqu'à 0,79 mg.L⁻¹, le chlorure avec 374 mg.L⁻¹, le sodium avec 1100 mg.L⁻¹ et le sulfate avec 1800 mg.L⁻¹. La présence de coliformes a été constatée dans les eaux souterraines. Des métaux, dont certains sont classés comme des substances prioritaires ou substances dangereuses prioritaires, ont aussi été détectés comme le cadmium (avec 5 μg.L⁻¹), le nickel (45 μg.L⁻¹), le plomb (140 μg.L⁻¹) et le manganèse (3,1 mg.L⁻¹). Du benzo(a)pyrène a aussi été dose à 0,025 μg.L⁻¹, alors qu'il est classé en tant que substance prioritaire.

3.6. ARGILES DU LIAS DES ARDENNES (MASSE D'EAU DE CODE FRB1G020)

Deux IC-SP situés à Hussigny-Godbrange et Longlaville sont concernés. Des concentrations élevées en sodium et sulfate ont été mesurées pour le deuxième site, avec des valeurs maximales respectives atteintes de 371 mg.L⁻¹ et 1,1 g.L⁻¹. Des substances prioritaires ou dangereuses prioritaires ont été détectées aux deux sites. Il s'agit d'hydrocarbures aromatiques polycycliques, avec par exemple 1,2 μg.L⁻¹ pour la somme des six molécules à Hussigny-Godbrange et 0,17 μg.L⁻¹ pour le benzo(k)fluoranthène à Longlaville, et du plomb avec 11 μg.L⁻¹ à Hussigny-Godbrange.

3.7. CALCAIRES DU DOGGER ET FORMATION FERRIFERE (MASSES D'EAU DE CODES FRCG010 ET FRCG026)

Un site qui se trouve à Montois-la-Montagne suit à la fois la qualité des eaux souterraines des calcaires du Dogger et celle des eaux d'ennoyage du bassin ferrifère lorrain. La conductivité à 25 °C mesurées dans les eaux prélevées était très élevée et a atteint la valeur de 2050 μS.cm⁻¹. Elle rend notamment compte de l'importance de la concentration en sulfate qui est montée à 790 mg.L⁻¹. Si le sulfate peut potentiellement provenir d'une ISD comme celle de Montois-la-Montagne, il est aussi une caractéristique des eaux du bassin ferrifère. De l'atrazine et ces métabolites ont été détectés (la concentration en déséthylatrazine a par exemple atteint 0,22 μg.L⁻¹) ainsi que des hydrocarbures aromatiques polycycliques (comme le benzo(g,h,i)pérylène qui a été dosé à 0,04 μg.L⁻¹), ces substances étant listées comme des substances prioritaires ou dangereuses prioritaires dans le domaine de l'eau. Les eaux prélevées étaient parfois turbides et ont présenté une concentration en manganèse qui a atteint 234 μg.L⁻¹.

3.8. CALCAIRES DE L'OXFORDIEN (MASSE D'EAU DE CODE FRB1G013)

Les calcaires de l'Oxfordien dont les eaux ont été contrôlées avec des résultats problématiques concernent un site à Pagny-sur-Meuse. Une conductivité importante y a été constatée puisqu'elle a atteint 6140 µS.cm⁻¹ à 25 °C. Des coliformes, coliformes thermotolérants, entérocoques, bactéries sulfito-réductrices et leurs spores ont été détectés parfois en grands nombres. La concentration en sodium a atteint 542 mg.L⁻¹ et celle en ammonium presque 15 mg.L⁻¹. Des hydrocarbures aromatiques polycycliques et du nickel, listés comme substances prioritaires, ont enfin été détectés dans les eaux souterraines.

3.9. MARNES ET CALCAIRES DE L'OXFORDIEN ET DU KIMMERIDGIEN (MASSE D'EAU DE CODE FRHG305)

Une installation classée située à Romagne-sous-Montfaucon sur la masse d'eau souterraine des « Calcaires kimméridgiens-oxfordiens karstiques nord-est du district (entre Ornain et limite de district) » a présenté des écarts dans le cadre du contrôle des eaux souterraines. Il s'agissait essentiellement de problèmes bactériologiques, avec la détection de bactéries sulfito-réductrices et de leurs spores, de coliformes et d'entérocoques. De l'ammonium et du manganèse ont aussi été mesurés à des concentrations respectives de 7,8 mg.L⁻¹ et 59 µg.L⁻¹.

3.10. ALLUVIONS DE LA MEUSE, DE LA CHIERS ET DE LA BAR (MASSE D'EAU DE CODE FRB1G015)

Douze sites implantés sur les alluvions de la Meuse et de ses affluents principaux ou secondaires ont fait l'objet de contrôles dont les résultats se sont distingués par rapport aux limites et références que nous avons utilisées. Ces sites se trouvent à Carignan, Charleville-Mézières, Donchery, Givet, Glaire et Sedan, Haybes, Herserange, Longlaville, Moulaine, Rehon, et Vrigne-Meuse.

Le pH des eaux contrôlées a parfois été basique avec une valeur mesurée de 10,2. La conductivité à 20 °C, qui a été mesurée à une valeur importante de 1452 μS.cm⁻¹, peut rendre compte des fortes minéralisations observées par exemple pour le sodium (584 mg.L⁻¹) et le sulfate (1,8 g.L⁻¹). L'ammonium a aussi été dosé jusqu'à 5,8 mg.L⁻¹. Des métaux ont été détectés comme le manganèse à 27 mg.L⁻¹ ou le plomb (à 13 μg.L⁻¹) qui est défini comme une substance dangereuse prioritaire dans le domaine de l'eau et dont la concentration a dépassé la limite de qualité des eaux destinées à la consommation humaine. L'indice phénols et les cyanures totaux ont atteint respectivement les valeurs de 160 μg.L⁻¹ et 470 μg.L⁻¹. Des hydrocarbures aromatiques polycycliques, classés dans la catégorie des substances prioritaires, ont été détectés (la concentration en indéno(1,2,3-cd)pyrène a par exemple atteint 0,045 μg.L⁻¹). En outre, des solvants chlorés ont été détectés, comme le trichloroéthylène dont la concentration s'est élevée jusqu'à 58 μg.L⁻¹.

3.11. ALLUVIONS DU PERTHOIS (MASSE D'EAU DE CODE FRHG005)

Pour les alluvions du Perthois, trois sites implantés à Ancerville, Laimont et Velaine ont fait l'objet de contrôles analytiques dont les résultats étaient parfois problématiques. La concentration en sulfate est montée à 623 mg.L⁻¹, celle en agents de surface anioniques à 5,8 mg.L⁻¹, celle en nitrites à 3 mg.L⁻¹, celle en ammonium à 2,5 mg.L⁻¹, celle en fluor à 2,5 mg.L⁻¹ et celle en fer total à 0,9 mg.L⁻¹. Le pH a atteint des valeurs très basiques et a été mesuré au maximum à 11,7 et la turbidité est montée jusqu'à 20 NTU. Des hydrocarbures aromatiques polycycliques, listés en substances prioritaires, ont été détectés, la somme des six molécules atteignant 0,16 μg.L⁻¹.

3.12. ALLUVIONS DE LA MEURTHE ET DE LA MOSELLE AMONT (MASSE D'EAU DE CODE FRCG017)

Cinq sites implantés sur les alluvions (parfois fluvio-glaciaires) de la Meurthe et de la Moselle, ainsi que sur leurs affluents en amont de la confluence avec la Meurthe sont concernés par des dépassements des limites et références de la qualité utilisées.

De l'ammonium a été mesuré jusqu'à 9,3 mg.L⁻¹, les hydrocarbures dissous jusqu'à 7 mg.L⁻¹, et les métaux comme l'aluminium ou le manganèse jusqu'à respectivement 1,5 mg.L⁻¹ et 3,0 mg.L⁻¹. Le pH était parfois acide (valeur descendant à 5,4) et la conductivité basse (117 μ S.cm⁻¹ à 25 °C). Des hydrocarbures aromatiques polycycliques, considérés comme des substances prioritaires, du benzène, un composé organochloré ou encore des solvants chlorés ont été détectés à plusieurs reprises. La concentration en chlorure de vinyle a par exemple atteint 2,2 mg.L⁻¹, alors que sa limite de qualité pour les eaux brutes destinées à la consommation humaine est fixée à 0,5 μ g.L⁻¹.

3.13. ALLUVIONS DE LA MOSELLE AVAL (MASSE D'EAU DE CODE FRCG016)

Les alluvions de la Moselle et de ses affluents (y compris celles de la Sarre³) situées en aval de la confluence avec la Meurthe supportent quatorze sites d'IC-SP pour lesquels des dérives de la qualité ont été constatées lors des contrôles effectués sur les eaux souterraines. Ils sont situés à Amnéville, Ars-sur-Moselle, Auboué, Basse-Ham, Manom, Marly, Metz, Moyeuvre-Grande, Réding, Thionville, Uckange et Veymerange.

Les dérives concernaient de nombreux paramètres, éléments ou composés. La conductivité à 25 °C a été mesurée jusqu'à 8740 µS.cm⁻¹ et le pH était parfois très basique avec une valeur de 12.9 atteinte. Le sulfate a atteint 1,6 g.L⁻¹, l'ammonium 40 mg.L⁻¹, les nitrites 2,4 mg.L⁻¹ et le fluor 5,3 mg.L⁻¹. Pour les métaux, dont certains

³ nous avons pris la liberté de rattacher les alluvions de la Sarre orphelines de masse d'eau souterraine, à celle de code FRCG016, puisque cette rivière est un affluent de la Moselle.

sont classés comme des substances prioritaires, des concentrations élevées ont été constatées par exemple pour le manganèse (avec un maximum atteint de 310 μ g.L⁻¹) et le nickel (930 μ g.L⁻¹). L'oxydabilité au permanganate de potassium a aussi atteint 43 mg O_2 .L⁻¹, les cyanures totaux 0,5 mg.L⁻¹ et l'indice phénols 6,2 mg.L⁻¹. Des hydrocarbures aromatiques polycycliques, considérés comme des substances prioritaires ou dangereuses prioritaires, ont été détectés à des concentrations parfois très importantes comme le fluoranthène avec 19 μ g.L⁻¹. Enfin, des solvants chlorés ont été détectés lors des contrôles, à des concentrations pouvant être élevées. Le chloroforme a atteint la concentration de 31 mg.L⁻¹, le trichloroéthylène 7,4 mg.L⁻¹ et le dichlorométhane 6,5 mg.L⁻¹, la limite de qualité des eaux destinées à la consommation humaine étant à titre d'exemple fixée à 10 μ g.L⁻¹ pour le trichloroéthylène.

3.14. BILAN DES DERIVES CONSTATEES

Plomb

Au final, les paramètres, éléments chimiques ou composés pour lesquels un écart a été constaté par rapport aux limites ou références qui ont été considérées selon cette première approche sont au nombre de 49. Leur liste est récapitulée sur l'illustration 5.

Conductivité (à 20 ou 25 °C)

Oxygène dissous

Bore

Fluor

Oxydabilité au KMnO4 à chaud en milieu acide Agents de surface anioniques pH Atrazine et ses métabolites

Turbidité Benzène

Ammonium Cyanures totaux
Chlorure Hydrocarbures dissous
Nitrate Indice phénols

Nitrites

Sodium

Sulfate

Benzo(a)pyrène

Benzo(b)fluoranthène

Bacteries sulfito-reductrices et leurs spores

Benzo(a,h,i)pérylène

Bacteries sulfito-reductrices et leurs spores
Coliformes
Coliformes thermotolérants
Benzo(g,h,i)pérylène
Benzo(k)fluoranthène
Fluoranthène

Entérocoques Indéno(1,2,3-cd)pyrène

Aluminium Naphtalène

Arsenic les sommes des 4 ou 6 HAP Cadmium Chloroforme

Chrome Chlorure de vinyle
Cuivre Dichloroéthane-1,2
Fer total Dichlorométhane
Manganèse Trichlorobenzène
Mercure Trichloroéthylène
Nickel Pentachlorophénol

Illustration 5 : Liste des paramètres, éléments et composés a priori problématiques pour le contrôle des données de l'année 2005.

4. Conclusion

es données analytiques du suivi de la qualité des eaux souterraines réalisé au cours de l'année 2005 en milieu industriel ont été récupérées et bancarisées dans la banque ADES pour 69 sites, répartis dans les cinq départements des Ardennes, de Meurthe-et-Moselle, de la Meuse, de la Moselle et des Vosges.

De nouvelles fiches ont été réalisées pour 17 nouveaux sites qui ont été étudiés. Les fiches des autres sites ont aussi été mises à jour. Au total, l'ensemble des sites d'IC-SP ainsi pris en compte s'élève à 129.

La méthode qui a été possible de mettre en œuvre pour établir la synthèse du suivi de la qualité des eaux souterraines, par masse d'eau, a été de comparer succinctement les résultats des analyses aux limites et références de la qualité des eaux brutes et des eaux destinées à la consommation humaine définies dans l'arrêté ministériel du 11 janvier 2007. Des écarts ont ainsi été constatés entre les résultats et les limites ou références, sans que l'on puisse attribuer en toute objectivité l'origine de ces écarts à la présence des IC-SP. Ces résultats analytiques singuliers ont été rapportés à leurs masses d'eau souterraines.

Les écarts identifiés concernent une quarantaine de paramètres, éléments ou composés contrôlés et affectent les treize masses d'eau souterraine du « Socle ardennais », des « Grès du Trias inférieur du bassin houiller », des « Calcaires du Muschelkalk », du « Plateau Iorrain versant Rhin », des « Argiles du Lias des Ardennes », des « Calcaires du Dogger des côtes de Moselle », du « Réservoir minier - Bassin ferrifère Iorrain », des « Calcaires oxfordiens », des « Calcaires kimméridgiens-oxfordiens karstiques nord-est du district (entre Ornain et limite de district) », des « Alluvions du Perthois », des « Alluvions de la Meuse, de la Chiers et de la Bar », des « Alluvions de la Meurthe et de la Moselle en amont de la confluence avec la Meurthe » et des « Alluvions de la Moselle en aval de la confluence avec la Meurthe ».

5. Bibliographie

Nguyen-Thé D., Hugues J-M., Durendeau B. (2009) – Suivi de la qualité des eaux souterraines en aval des installations classées situées dans le bassin Rhin-Meuse à l'ouest des Vosges, Synthèse des contrôles 2004. Rapport BRGM/RP-54517-FR, 131 p., 80 ill., 1 ann., 1 vol. hors-texte.

Peixoto E. (2008) – Compte rendu de la réunion du 7/03/2008 sur la bancarisation des données de surveillance des eaux souterraines. Document DRIRE Lorraine, 4 p., 2 tabl.

Annexe 1

Lexique des paramètres chimiques analysés

CODE_ELE	LIB_ELEM	UNITE	т	ı	s	VALMIN	VALMAX	CODE_SANDRE	СМА
ACENAPHT	Acenaphthene	microg/l	0	0	0	0.01	100	9337	
ACENAPTY	Acenaphthylene	microg/l	0	0	0	0.01	100	9337	
ACETA.E	Acetate D'Ethyle	mg/l	0	0	0	0.1		9303	10
ACETONE	Acetone	mg/l	0	0	0	0.5		9001	20
AFANTHEN	Benzo(A)Fluoranthene	microg/l	0	0	0	0.0003		9002	30
AG	Ag (Argent)	microg/l	0	0	Ν	10		1368	10
AGENTSUR	Agents Surf.Bleu Met	microg/l	0	0	0	50		9267	200
AL	Al (Aluminium)	microg/l	0	0	N	10	200	1370	200
ALACHLOR	Alachlore	microg/l	0	0	0	0.01		1101	0.1
ALCALTOT	Alcalinite Total	mg/l	0	0	О	0		9238	3.3
ALDICARB	Aldicarbe	microg/l	0	0	0	0.015		1102	
ALDRINE	Aldrine	microg/l	0	0	0	0.001	0.03	1103	
ALGUES	Algues	microg/l	0	0	0	0		1066	
AMOAM	Alc Meth Oran Av Mar	mg/l CaO	N	N	N	0		9004	
AMOPM	Alc Meth Oran Ap Mar	mg/l CaO	N	N	N	0		9005	
ANIO	Anions	meq	N	N	N	0		9006	
ANTHR.AH	Dibenzo(Ah)Anthracen	microg	0	0	0	0.01	100	9337	
ANTHRA.A	Benzo(A)Anthracene	microg	0	0	0	0.01	100	9337	
ANTHRACE	Anthracene	microg/l	0	0	0	0.01	100	9337	
AOX	Cl Organ.Absorbable	microg/l	0	0	0	10	100	1106	
APYRENE	Benzo(A)Pyrene	microg/l	0	0	0	0.0005		1115	
AS	As (Arsenic)	microg/l	0	0	N	0.0003	50	1369	50
ATRAZDE	Desethylatrazine	<u> </u>	0	0	0				30
-	,	microg/l		 	-	0.02	0.1	1108	
ATRAZDP	Deisopropylatrazine	microg/l	0	0	0	0.02	0.1	1109	
ATRAZINE	Atrazine	microg/l	0	0	0	0.02	0.1	1107	
AZAMONI	Azote Ammoniacal	mg/l	0	0	0	0		1335	
AZINETH	Azinphos Ethyl	microg/l	0	0	0	0		1110	0.1
AZINMET	Azinphos Methyl	microg/l	0	0	0	0		1111	0.1
AZNITRE	Azote Nitreux	mg/l	0	0	0	0		9008	
AZNITRI	Azote Nitrique	mg/l	0	0	0	0		9009	
AZTOTAL	Azote Total	mg/l	0	0	0	0		1319	
В	B (Bore)	microg/l	0	0	N	0		1362	1000
B24H	Bacteries 24 Heures	Unites	0	0	0	0		1041	
B72H	Bacteries 72 Heures	Unites	0	0	0	0		1040	
BA	Ba (Baryum)	microg/I	0	0	N	0		1396	100
BACFE	Bacteries Ferrugineu	unite par litre	0	0	0	0		9013	
BACO27	Bact. Coliformes 27Ø	p.100 ml	0	0	0	0		9014	
BACO37	Bact. Coliformes 37	p.100 ml	0	0	0	0		1447	
BACO44	Bact. Coliformes 44	p.100 ml	0	0	0	0		1448	
BACSFI	Bacteries Sulfitored	p.20 ml	0	0	0	0		9266	1
BACSR	Bacteries Sulfatored	p.100 ml	0	0	0	0		9015	
BE	Be (Berylium)	microg/I	0	0	Ν	0.1		1377	
BENZ	Benzene	microg/I	0	0	0	0.15		1114	10
BENZANTR	Benzo (A) Anthracene	microg/l	0	0	0	0		9277	
BFA.1112	Benzo(11,12)Fluorant	microg/l	0	0	0	0		1117	
BFANT.34	Benzo (3,4) Fluorant	microg/l	0	0	0	0		1116	
BFANTHEN	Benzo(B)Fluoranthene	microg/l	0	0	0	0.0005		1116	
BIOTOXI	Test De Biotoxicite	equitox/m3	0	0	0	0		9233	
BPER.112	Benzo (1,12) Perylen	microg/l	0	0	0	0		1118	
BPYR.34	Benzo (3,4) Pyrene	microg/l	0	0	0	0		1115	0.01
BR BR	Brome	microg/l	0	0	N	0		1378	5.51
BR2CLMET	Dibromochloromethane	microg/l	0	0	0	0.2		1158	
			0	0	0				
BR2EA.12	Dibromoethane.12	microg/l		 	0	0.5 0.5		9308 9309	
BR3META	Tribromomethane	microg/l	0	0	_				400
BRCLMET	Bromochloromethane	microg/I	0	0	0	0		1121	100

DDOMOE	Dramafarma	mioro a/l	0		_	0.4		1122	100
BROMOF	Bromoforme	microg/l	0	0	0	0.4		1122	100
BUTANOL	Butanol	microg/l	0	0	0	0		9250	
BUTYC.AC	Acetate Butyglycol	microg/l	_	Ė	0	1		9020	
BUTYL.AC	Acetate De Butyle	microg/l	0	0	0	1		9021	
BUTYLBZ	Butylbenzene	microg/l	N	N	Ė	-10000		9333	
C13	C13 (Carbone 13)	delta pour 1000 PDB	N	N	0			1069	
C14	C14 (Carbone 14)	pour cent NBS	_		-	0		1077	400
CA CA.245T	Ca (Calcium)	mg/l	0	0	N O	0.3		1374 9024	100
_	2,4,5-Trichloroani.	microg/l	0	0	0			9024	
CA.246T CA.25D	2,4,6-Trichloroani.	microg/l	-	-	Ė	0.3			
	2,5-Dichloroaniline	microg/l	0	0	0	0.3		9026	
CA.M	M-Chloroaniline	microg/l	0	0	0	0.3		9027	
CA.O	O-Chloroaniline	microg/l	_	0	0	0.2		9028	
CA.P	P-Chloroaniline	microg/l	0	0	0	0.1		9029	
CANP.O	O-Chloroan+Nitrophe	microg/l	0	0	0	0	0.4	9030	
CARBENDA	Carbendazim	microg/l	0	0	0	0.004	0.1	1129	
CARBOFU	Carbofuran	microg/l	0	0	0	0.015		1130	
CATIO	Cations	meq	N	N	N	0		9032	
CCL4	Tetrachl. Carbone	microg/l	0	0	0	0.1		1276	2
CD	Cd (Cadmium)	microg/l	0	0	N	0.3	5	1388	5
CHLORD.A	Chlordane.A	microg/l	0	0	0	0.002	0.1	9033	0.1
CHLORD.B	Chlordane.B	microg/l	0	0	0	0.0003	0.1	9214	0.1
CHLORD.G	Chlordane.G	microg/l	0	0	0	0.001	0.1	9034	0.1
CHLOROF	Chloroforme	microg/l	0	0	0	0.7		1135	200
CHLOROME	Chloromethane	microg/l	0	0	0	0		9035	
CHLOTOLU	Chlotoluron	microg/l	0	0	0	0.05	0.01	1136	
CHRYSENE	Chrysene	microg/l	0	0	0	0		9276	
CL	CI (Chlorures)	mg/l	0	0	N	0	200000	1354	200
CL2	Cl2 Libre	mg/l	0	0	N	0.05	5	1398	
CL2BRMET	Dichlorobromomethane	microg/l	0	0	0	0.2		1167	60
CL2BZ	Dichlorobenzene	microg/l	0	0	0	0.0003		9224	
CL2BZ.12	1,2-Dichlorobenzene	microg/l	0	0	0	0.1		1165	
CL2BZ.13	1,3-Dichlorobenzene	microg/l	0	0	0	0.1		1164	
CL2BZ.14	1,4-Dichlorobenzene	microg/l	0	0	0	0.1		1166	
CL2BZP	Dichlorobenzphenone	microg/l	0	0	0	0		9252	0.1
CL2BZP44	4,4-Dichlorobzphenon	microg/l	0	0	0	0.011		9039	
CL2EA	Dichloroethane	microg/l	0	0	0	0.0003		9225	
CL2EA.11	1,1-Dichloroethane	microg/l	0	0	0	10		1160	
CL2EA.12	1,2-Dichloroethane	microg/l	0	0	0	10		1161	30
CL2EE.11	11-Dichloroethene	microg/l	0	0	0	0		9307	
CL2EE.TR	Trans-Dichloroethene	microg/l	0	0	0	0		9271	
CL2ET	Dichloroethylene	microg/l	0	0	0	0.0003		9226	
CL2ET.11	1,1-Dichloroethylene	microg/l	0	0	0	6		1162	30
CL2ET.12	1,2-Dichloroethylene	microg/l	0	0	0	11		1163	50
CL2ET.CS	Cis-Dichloroethylene	microg/l	0	0	0	0.5		9272	
CL2ET12C	1,2 Cis Dichloroethy	microg/l	0	0	0	15		9272	
CL2ET12T	1,2 Trs Dichloroethy	microg/l	0	0	0	11		9271	
CL2ETCS	Cis-Dichloroethylene	microg/l	0	0	0	0.5		9272	
CL2MET	Dichloromethane	microg/l	0	0	0	8		1168	20
CL2PP	Dichloropropene	microg/l	0	0	0	0		9227	
CL2PP.13	1,3-Dichloropropene	microg/l	0	0	0	0.7		9044	
CL2PPA12	1,2 Dichloropropane	microg/l	0	0	0	0		9275	
CL3E.111	1,1,1-Trichloroethan	microg/l	0	0	0	0.2		1284	2000
CL3E.112	1,1,2-Trichloroethan	microg/l	0	0	0	0		1285	
CL3EA	Trichloroethane	microg/l	0	0	0	0		9268	
CL3ETHY	Trichloroethylene	microg/l	0	0	0	0.2	30	1286	70
CL3MET	Trichloromethane	microg/l	0	0	0	0		1135	

01.000110.4	T	1	٦_	_	_				
CL3POH34	Trichlorophenol 234	microg/l	0	0	0	0.2		9328	
CL3POH35	Trichlorophenol 235	microg/l	0	0	0	0.2		9326	
CL3POH36	Trichlorophenol 236	microg/l	0	0	0	0.2		9327	
CL3POH45	Trichlorophenol 245	microg/l	0	0	0	0.1		9048	
CL3POH46	Trichlorophenol 246	microg/l	0	0	0	0.1		9049	
CL3PP123	123Trichloropropane	microg/l	0	0	0	0.5		9310	
CL4EA	Tetrachloroethane	microg/l	0	0	0	0		9255	
CL4ETHY	Tetrachloroethylene	microg/l	0	0	0	0.2	10	1272	40
CL4MET	Tetracloromethane	microg/l	0	0	0	0		1276	
CL4POH45	Tetrachlorophen.2345	microg/l	0	0	0	0.1		9323	
CL4POH46	Tetrachlorophen.2346	microg/l	0	0	0	0.1		9324	
CL4POH56	Tetrachlorophen.2356	microg/l	0	0	0	0.1		9325	
CL6BUTA	Hexachlorobutadiene	microg/l	0	0	0	0.001		9051	0.003
CL6BZ	Hexachlorobenzene	microg/l	0	0	0	0.002	0.01	1199	0.003
CLBENZAL	CI De Benzalkonium	microg/l	0	0	0	5		9300	
CLBZ	Chlorobenzene Mono	microg/l	0	0	0	0.1		9052	
CLBZKON	Chlorur Benzalkonium	microg/l	0	0	0	5	100	9289	
CLNIBZT	Chloronitrobenz Tota	microg/l	0	0	0	0		9053	
CLOS	Clostridium	p. 20 ml	0	0	0	0	1	1045	
CLPOH.2	Chlorophenol 2	microg/l	0	0	0	0.1		9055	
CLPOH.3	Chlorophenol 3	microg/l	0	0	0	0.1		9056	
CLPOH.4	Chlorophenol 4	microg/l	0	0	0	0.1		9318	
CLPOH23D	Dichlorophenol 23	microg/l	0	0	0	0.1		9329	
CLPOH24D	Dichlorophenol 24	microg/l	0	0	0	0.1		9057	
CLPOH25D	Dichlorophenol 25	microg/l	0	0	0	0.1		9319	
CLPOH26D	Dichlorophenol 26	microg/l	0	0	0	0.1		9320	
CLPOH34D	Dichlorophenol 34	microg/l	0	0	0	0.1		9321	
CLPOH35D	Dichlorophenol 35	microg/l	0	0	0	0.1		9322	
CLPROP.3	Chloropropene 3	microg/l	0	0	0	0.5		9314	
CLPYR.E	Chlorpyriphos.Ethyl	microg/l	0	0	0	0.007	0.1	9058	0.1
CLVINYLE	CI De Vinyle	microg/l	0	0	0	0.5		9306	
CMA.24	2Chloro4Methylanilin	microg/l	0	0	0	0.3		9059	
CMA.32	3Chloro2Methylanilin	microg/l	0	0	0	0.3		9060	
CMA.42	4Chloro2Methylanilin	microg/l	0	0	0	0.3		9061	
CMA.62	6Chloro2Methylanilin	microg/l	0	0	0	0.2		9062	
CMP.25	2Chloro5Methylphenol	microg/l	0	0	0	0.1		9063	
CMP.42	4Chloro2Methylphenol	microg/l	0	0	0	0.1		9064	
CMP.43	4Chloro3Methylphenol	microg/l	0	0	0	0.1		9065	
CN	Cn (Cyanures)	microg/l	0	0	N	0.5	50	1390	50
CN-L	Cn-1	mg/l	0	0	0	0.01		9235	
CN-T	Cn-Totaux	mg/l	0	0	0	0.5		1390	
CNA.24	2Chloro4Nitroaniline	microg/l	0	0	0	0.4		9067	
CNA.25	2Chloro5Nitroaniline	microg/l	0	0	0	0.3		9068	
CNA.42	4Chloro2Nitroaniline	microg/l	0	0	0	0.3		9069	
CNA.43	4Chloro3Nitroaniline	microg/l	0	0	0	0.4		9070	
CNB	Chloronitrobenzene	microg/l	0	0	0	0.002		9312	
CNB.25D	2,5-Dichloronitrobz	microg/l	0	0	0	0.1		9071	
CNB.M	M-Chloronitrobenz	microg/l	0	0	0	0.1		9072	
CNB.MP	M+P-Chloronitrobenz	microg/l	0	0	0	0.1		9073	
CNB.O	O-Chloronitrobenz	microg/l	0	0	0	0.1		9074	
CNB.P	P-Chloronitrobenz	microg/l	0	0	0	0.1		9075	
СО	Co (Cobalt)	microg/l	0	0	N	0.1		1379	
CO2	Co2 Dissous	mg/l	0	0	0	0		1344	
CO2A	Co2 Agressif	mg/l	0	0	N	0.1		9076	
CO2CARB	Co2 (Carbonate)	mg/l	0	0	0	0		9230	
CO2EQUIL	Co2 (Equilibrant)	mg/l	0	0	0	0		9231	
CO2L	Co2 Libre	mg/l	0	О	N	0.1		1344	

00070741	000 (T + 1)		10	_	_			2000	
CO2TOTAL	C02 (Total)	mg/l	0	0	0	0		9232	
CO3	Co3 (Carbonate)	mg/l	0	0	N	0		1328	
COD	Carbone Orga Dissous	mg/l	0	0	N	0		1318	
COL37	Colimetrie A 37 C	par 100 ml	N	N	N	0	1	9077	
COL44	Colimetrie A 44 C	par 100 ml	N	N	N	0	1	1448	
COLF	Coliformes Fecaux	Unites	N	N	0	0		1448	0
COLIMES	Coliformes Mesophile	Unit,s	0	0	0	0		9278	0
COLITHM	Coliformes Thermotdr	p 100 ml	N	N	0	0		1448	0
COLITHT	Colif.Thermotolerant	p 100 ml	0	0	0	0		1448	0
COLITOTA	Coliformes Totaux	p 100 ml	0	0	0	0		1447	0
COLMA	Pouvoir Colmatant	Unites Beaudrey	Ν	N	Ν	0		9081	
COLMEMFI	Coliformes Memb.Filt	p 100 ml	0	0	0	0		9279	0
COLT	Coliformes Totaux	Unites	N	N	0	0		1447	0
COND	Conductivite	Micro S.cm-1 (20d.C)	N	N	Ν	25		1304	400
CONDP	Conduct Apres Marbre	Micro S.cm-1 (20d.C)	Ν	N	Ν	30		9084	
COT	Carbone Orga Total	mg/l	0	0	Ν	0		1325	
CR	Cr (Chrome Total)	microg/l	0	0	N	30	500	1389	50
CR6	Cr6(Chrome Hexaval.)	microg/l	0	0	Ν	10		1371	
CRESOL	Cresol M+P	microg/l	0	0	0	0		9087	
CU	Cu (Cuivre)	microg/l	0	0	N	10	1000	1392	1000
CUMENE	Cumene	microg/l	0	0	О	1		9281	
CYANAZ	Cyanazine	microg/l	0	0	N	0		1137	
CYHNOL	Cyclohexanol	microg/l	0	0	О	0.1		9088	
CYHNON	Cyclohexanone	microg/l	0	0	0	0.1		9089	
CYHXAN	Cyclohexane	microg/l	0	0	0	0.1		9249	
CYPENTA	Cyclopentane	microg/l	0	0	0	5		9290	
CYPERME	Cypermethrine	microg/l	0	0	0	0.005		1140	
D	D (Deuterium)	delta pour1000 SMOW	N	N	0	-10000		1071	
DBO2	Dbo2	mg/l	N	N	N	0		1321	
DBO2 DBO5	Dbo5	mg/l	N	0	N	1		1313	
DCO	Dco	mg/l	0	0	N	20		1313	5
-			0	0	0	0			3
DDD.24	Ddd.24	microg/l	-	Ė				1143	
DDD.44	Ddd.44	microg/l	0	0	0	0		1144	
DDE	Dde	microg/l	0	0	-	0		9264	
DDE.24	Dde.24	microg/l	0	0	0	0		1145	
DDE.44	Dde.44	microg/l	0	0	0	0		1146	
DDT	Ddt	microg/l	0	0	0	0		9265	
DDT.24	Ddt.24	microg/l	0	0	0	0		1147	
DDT.44	Ddt.44	microg/l	0	0	0	0		1148	
DETAN	Detergent Anionique	microg/l	0	0	0	5	200	1444	
DETCAT	Detergent Cationique	mg/l	0	0	0	0.0003		9095	
DETNIONI	Detergent Non Ioniqu	microg/I	0	0	0	0		1443	
DIAZINON	Diazinon	microg/l	0	0	0	0.001	10	1157	0.1
DICHLOR	Dichlorvos	microg/l	0	0	0	0.01		1170	0.1
DIELDRIN	Dieldrine	microg/l	0	0	0	0.005	0.03	1173	
DINITO	Dinitrotoluene	microg/l	0	0	0	0		9096	
DISULF	Disulfoton	microg/l	0	0	0	0.007	0.1	9097	0.1
DITHIOCA	Dithiocarbamates	microg/l de Cs2 libé	0	0	0	0	10000	9301	
DIURON	Diuron	microg/l	0	0	0	0.05	10	1177	
DNTPOH25	2,5 Dinitrophenol	microg/l	0	0	0	0		9098	
DP4	Dp5 Arochlor 1242	microg/l	0	0	0	0		9316	
DP5	Dp5 Arochlor 1254	microg/l	0	0	0	0		9099	
DP6	Dp6 Arochlor 1260	microg/l	0	0	0	0.02	0.5	9100	
ECOL	Escherichia Coli	p. 100 ml	N	N	0	0		1449	
EH	Eh	mV	Ν	N	N	-600		9101	
ENDOS.A	Endosulfan.A	microg/l	0	0	0	0.002	0.1	1178	0.1
					-			1179	

ENDRINE	Endrine	microa/l	О	0	О	0.005	0.1	1181	0.1
EPOH.25D		microg/l	0	0	0	0.005	0.1		0.1
	Dimethylphenol 25 Escheria Coli	microg/l	N	N	N	0		9104 1449	
ESH		unites par ml	-	-	0				
ETBZ.T	Trimethylbenzene	microg/l	0	0	Ė	0.15		9332	
ETHANOL	Ethanol	microg/l	0	0	0	5		9305	000
ETHYLBEN	Ethyl Benzene	microg/l	0	0	0	0.15		9248	300
ETHYLPAR	Ethyl Parathion	microg/l	0	0	0	0.009	0.1	1232	0.1
ETRPHOS	Etrimphos	microg/l	0	0	0	0.006	0.1	9107	0.1
ETY	Bacteriophage Sh	unites par ml	N	N	N	0		1059	
ETYPOH.2	Ethylphenol 2	microg/l	0	0	0	0		9109	
ETYPOH.3	Ethylphenol 3	microg/l	0	0	0	0		9110	
F	F (Fluor)	microg/l	0	0	N	0	1500	1391	1500
FANTHEN	Fluoranthene	microg/l	0	0	0	0.001		1191	
FE	Fe (Fer Total)	mg/l	0	0	N	0.01	200	1393	0.2
FE2	Fe2 (Fer Ferreux)	mg/l	0	0	N	0		1366	
FE3	Fe3 (Fer Ferrique)	mg/l	0	0	Ν	0		1365	
FEDISSOU	Fe (Dissous)	microg/l	0	0	Ν	0	100	1393	
FENITROT	Fenitrothion	microg/l	0	0	0	0.007	0.1	1187	0.1
FENTHION	Fenthion	microg/I	0	0	0	0		1190	
FLUFENOX	Flufenoxuron	microg/l	0	0	0	0.02		9297	
FLUOBORA	Fluoborate	microg/l	0	0	0	0	0.1	9219	
FLUORENE	Fluorene	microg/l	0	0	0	0.01	100	9336	
FLURAL.T	Trifluraline	microg/l	О	0	О	0.005	0.1	1289	0.1
FMA.2T	2-Trifluoromethyla.	microg/I	0	0	0	0.2		9111	
FMA.3T	3-Trifluoromethyla.	microg/I	0	0	0	0.3		9112	
FMA.4T	4-Trifluoromethyla	microg/I	0	0	0	0.2		9113	
FOLPEL	Folpel	microg/I	0	0	0	0.02	0.1	1192	0.1
FONGI	Fongicides	en 10-6 mg	0	N	N	0.02	0.1	9114	0.1
FORMOTHI	Formothion	microg/l	0	0	0	0.07	0.1	9115	0.1
FREON113	Freon 113	microg/l	0	0	0	2	0.1	1196	0.1
GHPERYLE	Benzo(Ghi)Perylene	microg/l	0	0	0	0.005		1118	
-	H2S Libre		0	0	N	0.003			
H2S		mg/l		!		0.1		1343	
H3	H3 (Tritium)	UT	N	N	0	-		1078	
HCB	Hcb	microg/l	0	0	0	0	0.4	1199	0.4
HCH	Hch	microg/l	0	0	0	0	0.1	9253	0.1
HCHA	Hch Alfa	microg/l	0	0	0	0.001	0.1	1200	0.1
HCHB	Hch Beta	microg/l	0	0	0	0.001	0.1	1201	0.1
HCHD	Hch Delta	microg/l	0	0	0	0.001	0.1	1202	0.1
HCHG	Hch Gamma (Lindane)	microg/l	0	0	0	0.001	0.1	1203	0.1
HCO3	Hco3 (Hydrogenocarb)	mg/l	0	0	N	0		1327	
HEPTANE	Heptane	microg/l	0	0	0	5		9251	
HERBI	Herbicides	en 10-6 mg	0	N	N	0		9120	
HEXANE	Hexane	microg/I	0	0	0	5		9291	
HG	Hg (Mercure)	microg/l	0	0	N	0.1	10	1387	1
HPA	Hpa (Total)	microg/l	0	0	0	0.0003	0.2	1445	0.2
HPTCL	Heptachlore	microg/l	0	0	0	0.005	0.1	1197	0.1
HPTCL.EP	Heptachlore Epoxyde	microg/l	0	0	0	0.005	0.1	1198	0.1
HYDA	Hydrocarb. Aromatiq.	microg/I	0	0	N	0.001		1445	
HYDD	Hydrocarb. Dissous	microg/I	0	0	N	30	1000	1442	10
I	lode	microg/I	0	Ν	N	0		1381	
IND.CH2	Indice Ch2	mg/l	0	0	0	0		1446	
IND.PERM	Indice Permanganate	mg/l	О	0	0	0.5		9229	
INPYRENE	Indeno Pyrene	microg/I	0	0	0	0.005		1204	
IPYR.123	Indeno(1,2,3Cd)Pyren	microg/I	0	0	0	0		1204	
ISOPROPA	Isopropanol	microg/I	0	0	0	0		9259	
3 2	· ·		-	-	0		0.01	1208	
ISOPROTU	Isoproturon	microg/l	0	0	IC)	0			

KFANTHEN	Benzo(K)Fluoranthene	microg/l	0	0	0	0.0003		1117	
LEGIONEL	Legionelles	ds 1 I	0	0	0	0		1047	
LEVURES	Levures	pour 100 ml	0	0	0	0		1068	
LI	Li (Lithium)	microg/l	0	0	N	0		1364	
LINDANE	Lindane	microg/l	0	0	О	0		1203	
LINURON	Linuron	microg/l	0	0	0	0.05	0.1	1209	
MALATHIO	Malathion	microg/l	0	0	0	0.007	0.1	1210	0.1
MATORG	Matieres Organiques	mg O2/I	0	0	0	0	0	1021	0
MATSU	Matieres Suspension	mg/l	N	0	N	0		1305	
MCPA.24	2,4 Mcpa	microg/l	0	0	0	0.015	0.1	1212	
	Mercaptodimethur	microg/l	0	0	0	0.02	0.1	9298	
MESITYLE	Mesithylene	microg/l	0	0	0	1		9283	
	Methylisobutylcetone	microg/l	0	0	0	0		9261	
METCYPEN	Methylcyclopentane	microg/l	0	0	0	5		9294	
METETHYC			0	0	0	0.5		9304	
METHANOL	Methylethylcetone Methanol	mg/l	0	0	0	0.3	10	9216	
		mg/l		0	0		10		
METOPROP	Methoxypropanol	microg/l	0	_	-	0 00	0.4	9260	0.1
METOXCL	Methoxychlore	microg/l	0	0	0	0.02	0.1	1224	0.1
METOXURO	Metoxuron	microg/l	0	0	0	0.05		1222	
METPARAT	Methyl Parathion	microg/l	0	0	0	0.007	0.1	1233	0.1
METPEN.2	Methyl 2 Pentane	microg/l	0	0	0	5		9292	
METPEN.3	Methyl 3 Pentane	microg/l	0	0	0	5		9293	
MG	Mg (Magnesium)	mg/l	0	0	N	0	50	1372	50
MN	Mn (Manganese)	mg/l	0	0	N	0.01	50	1394	0.05
MO	Mo (Molybdene)	microg/l	0	0	0	0		1395	
MPCLAN	Metaparachloroanilin	microg/I	0	0	0	0		9133	
MTBE	Mtbe	microg/I	0	0	0	0		9134	
MXYLENE	M-Xylene	microg/l	0	0	0	0.15		1293	
N15	N15 (Azote 15)	mg/l	N	N	О	-10000		1070	
NA	Na (Sodium)	mg/l	0	0	N	0	150	1375	150
NANIS.2	2-Nitroanisol	microg/I	0	0	0	0.3		9137	
NANIS.4	4-Nitroanisol	microg/I	0	0	0	0.3		9138	
NAPHTAL	Naphtalene	microg/I	0	0	0	0.15	100	9302	
NB	Nitrobenzene	microg/l	0	0	0	0.2		9139	
NEBURON	Neburon	microg/l	0	0	0	0.004	0.1	9140	
NH3	Nh3	microg/l	0	0	0	0		1351	
NH4	Nh4 (Azote Ammoniac)	mg/l	0	0	Ν	0.03	0.5	1335	0.5
NI	Ni (Nickel)	microg/l	0	0	N	30		1386	50
NIPHE	Nitrophenol	microg/l	0	0	0	0		9141	
NK	Azote Kjeldahl	mg/l	0	0	0	0.1	3	1319	1
NO2	No2 (Nitrites)	mg/l	0	0	N	0.02	0.1	1339	0.1
NO3	No3 (Nitrates)	mg/l	0	0	N	0.7	50	1340	50
NONYLPOH	Nonyl Phenol	microg/l	0	0	N	20	50	9330	
NORG	Norg(Azote Organ.)	mg/l	0	0	N	0		1319	
NP.M	M-Nitrophenol	microg/l	0	0	0	0.5		9143	
NP.O	O-Nitrophenol	microg/l	0	0	0	0.3		9144	
NP.P	P-Nitrophenol	microg/l	0	0	0	0.3		9145	
NT.24D	2,4-Dinitrotoluene	microg/l	0	0	0			9145	
	'				Ė	0.3			
NT.26D	2,6-Dinitrotoluene	microg/l	0	0	0	0.3		9147	
NT.M	M-Nitrotoluene	microg/l	0	0	0	0.1		9148	
NT.O	O-Nitrotoluene	microg/l	0	0	0	0.2		9149	
NT.P	P-Nitrotoluene	microg/l	0	0	0	0.3		9150	
NTCA.M	M-Nitrotol+Chloroani	microg/l	0	0	0	0.1		9151	
NTCA.MP	M-Nitrotoluen+P-Chl.	microg/l	0	0	0	0.3		9152	
NTK	Ntk	mg/l	0	0	0	0		1319	
NUM22	Numeration Tot 22 C	Unites par ml	N	N	N	0		1040	
NUM37	Numeration Tot 37 C	Unites par ml	N	Ν	Ν	0		1041	

OCL OI OCTYLPOH OCO OH Hy OHAL OI OPDDD OI OPDDD OI OPDDT OI	organochlores Octyl Phenol lydroxyde Organohalogenes	delta pour1000 SMOW microg/l microg/l	0	N O	0	-10000 0		1072 9258	
OCTYLPOH OR OHAL OR OPDDD OPDDE OPDDT OPDDT	Octyl Phenol lydroxyde		_	V	ı	U		32301	
OH Hy OHAL OI OPDDD OI OPDDE OI OPDDT OI	lydroxyde	microg/i		0	0	50	50	9331	
OHAL OI OPDDD OI OPDDE OI OPDDT OI		ma/l	0	0	0	0	50	9156	
OPDDD OI OPDDE OI OPDDT OI	ruarionalouenes	mg/l en 10-6 mg/l	N	N	N	0		9157	
OPDDE O	-	•	0	0	0	0.002	0.1		0.1
OPDDT O)p Ddd	microg/l		-	Ė		0.1	1143	0.1
	Op Dde	microg/l	0	0	0	0.001	0.1	1145	0.1
OPHO O)p Ddt	microg/l	0	0	0	0.005	0.1	1147	0.1
I O D T L O D O 4	Organophosphores	en 10-6 mg/l	N	N	N	0		9161	
	Orthophosphates	mg/l	0	0	0	0		1433	
)-Toluidine	microg/l	0	0	0	0		9162	
	Oxydabilite Acide	mg/l	0	0	0	0	5	1315	5
	Oxydabilite Basique	mg/l	0	0	N	0		1316	
	Oxygene Dissous	mg/l	0	0	0	0		1311	
)-Xylene	microg/l	0	0	0	0.15	_	1292	_
	hosphore Total	mg/l	0	0	0	0.01	5	1350	5
	arathion	microg/l	0	0	0	0		1232	
	aramethoxyphenol	microg/l	0	0	0	0		9168	
	b (Plomb)	microg/l	0	0	N	3	50	1382	50
	cb	microg/l	0	0	0	0.07		9169	0.1
	cb 101	microg/l	0	0	0	0.02	10	1242	0.1
	cb 105	microg/l	0	0	0	0.02	10	9213	0.1
	cb 118	microg/l	0	0	0	0.02	10	1243	0.1
PCB1248 Pc	cb 1248	microg/l	0	0	0	0.02	10	9285	0.1
PCB1254 Pc	cb 1254	microg/l	0	0	0	0.02	10	1250	0.1
PCB1260 Pc	cb 1260	microg/l	0	0	0	0.02	10	9228	0.1
PCB128 Pc	cb 128	microg/l	0	0	0	0.02	10	9212	0.1
PCB138 Pc	cb 138	microg/l	0	0	0	0.02	10	1244	0.1
PCB153 Pc	cb 153	microg/l	0	0	0	0.02	10	1245	0.1
PCB156 Pc	cb 156	microg/l	0	0	0	0.02	10	9211	0.1
PCB170 Pc	cb 170	microg/l	0	0	0	0.02	10	9210	0.1
PCB180 Pc	cb 180	microg/l	О	0	0	0.02	10	1246	0.1
PCB194 Pc	cb 194	microg/l	0	0	0	0.005	10	9299	0.1
PCB28 Pc	cb 28	microg/l	0	0	0	0.02	10	1239	0.1
PCB52 Pc	cb 52	microg/l	0	0	0	0.02	10	1241	0.1
PCP Pe	entachlorophenol	microg/l	0	0	0	0.01		1235	0.01
PEST Pe	esticides	microg/l	0	0	Ν	0	0.5	9170	
PH Ph	h	Unites pH	Ν	Ν	Ν	2	9	1302	9
PHENANTH PI	henanthrene	microg/l	0	0	0	0.01	100	9337	
PHENOL P	henol	microg/l	0	0	0	20		1440	0.5
PHP Pt	h Apres Marbre	Unites pH	Ν	N	N	4		9172	
PMTRIN.C Pe	ermethrine.Cis	microg/l	0	0	0	0.005		9287	
PMTRIN.T Pe	ermethrine.Trans	microg/l	0	0	0	0.005		9288	
PO4 Po	o4 (Phosphate)	mg/l	0	0	N	0.01	5	9173	
POH Inc	nd.Phenol(Phenols)	microg/l	0	0	N	20	500	1440	0.5
PPDDD Pr	p Ddd	microg/l	0	0	0	0.005	0.1	1144	0.1
<u> </u>	p Dde	microg/l	0	0	0	0.007	0.1	1146	0.1
—	p Ddt	microg/l	0	0	0	0.005	0.1	1148	0.1
	rometryne	microg/l	0	0	0	0		1254	
	ropanol-2	microg/l	0	0	0	0		9315	
	ropazine	microg/l	0	0	0	0		1256	
	ropetemphos	microg/l	0	0	0	0.007	0.1	9178	0.1
	ropiconazole	microg/l	0	0	0	0.02	V.1	1257	0.1
	ropylbenzene	microg/l	0	0	0	1		9282	
	seudomonas	ds 100 ml	0	0	0	0		1046	
	-Xylene	microg/l	0	0	0	0.15		1294	
	ryrene	microg/l	0	0	0	0.13	100	9337	

	1	1	1_	_	1_		1		
QUINTOZE	Quintozene	microg/l	0	0	0	0.001	0.1	9181	0.1
RB	Rb (Rubidium)	microg/l	0	0	N	0.1		9182	
RE105	Residus Sec 105 C	mg/l	N	N	N	0		1307	
RE180	Residus Sec 180 C	mg/l	N	N	N	0	1500	9184	1500
RE260	Residu Sec 260	mg/l	0	0	0	0		9185	
RECAL	Residus Calcine 525C	mg/l	N	N	N	0		9186	
REDOX	Redox		0	0	0	0		1330	
RES	Residus Secs	mg/l	N	N	N	0		9187	1500
RESIS	Resistivite	ohms/cm 20 d Celsius	N	N	N	0		9188	
RESULF	Residu Sulfate	mg/l	0	0	0	0		9189	
S34	S (Soufre 34)	delta pour 1000 CD	N	N	0	-10000		1073	
SALMONEL	Salmonelles	1000 ml	0	0	0	0		1451	0
SB	Sb (Antimoine)	microg/l	0	0	Ν	0		1376	10
SE	Se (Selenium)	microg/l	0	0	Ν	1	10	1385	10
SEC	Sec	mg/l	0	0	Ν	0		1435	0.1
SEH	Subst.Extract.Hexane	mg/l	0	0	0	0		9263	
SI	Si (Silicium)	mg/l	0	0	Ν	0		9244	
SIMAZINE	Simazine	microg/l	0	0	0	0.02	0.1	1263	
SIO2	Sio2 (Silice)	mg/l	0	0	N	0		1348	
SIO2IONI	Sio2 Ionique	mg/l	0	0	О	0		1348	
SIO2NION	Sio2 Non Ionique	mg/l	0	0	О	0		9221	
SN	Sn (Etain)	microg/l	0	0	0	40		1380	
SO3	So3 (Sulfites)	mg/l	0	0	0	0		9191	
SO4	So4 (Sulfates)	mg/l	0	0	N	0	250	1338	250
SR	Sr (Strontium)	microg/l	0	0	N	0		1363	
STAPHYLO	Staphylocogues Tot.	p. 100 ml	N	N	0	0	0	9286	0
STRP	Streptocoques	p. 100 ml	N	N	0	0	0	1450	0
STYRENE	Styrene	mg/l	0	0	0	0.15	Ŭ	9194	0.02
SULF	Sulfures	mg/l	0	0	N	0.10	0.05	1355	0.02
TA	Titre Alcalimetrique	Degres Français	0	N	N	0.1	0.00	1346	
TAC	Titre Alca. Complet	Degres Français	N	N	N	0.1	50	1347	
TACAM	Titre Alca.Ap.Marbre	Degres Français	N	N	N	0	50	9207	
TAIR	Temperature De L'Air	degres Celsius	N	N	N	-40	30	1409	
TEHYTHIF	· ·	mg/l	0	0	0	0	10	9218	
TEMP	Tetrahydrothiofene	Degres Celsius	N	N	N	0	25	1301	
TERBUCON	Temperature De L'Eau Terbuconazole		0	0	0	0.01	25	9206	
		microg/l	+-	0	0		0.4		0.1
TERBUPHO	Terbuphos	microg/l	0	-	-	0.007	0.1	1267	0.1
TERBUT	Terbutanol	microg/l	0	0	0	0		9196	
TERBUTYL	Terbutylazine	microg/l	0	0	0	0		1268	
TH	Durete Totale	Degres Français	N	0	N	0		1345	
THCA	Thca	degres Francais	N	0	N	0		9237	
THIMET	Thiometon	microg/l	_	0	0	0		9197	
THIOCYAN	Thiocyanates	microg/l	0	0	0	0		9242	
THP	Th Apres Marbre	Degres Francais	N	0	N	0		9198	
TI	Ti (Titane)	mg/l	0	0	0	0	1	1373	
TL	Thallium	mg/l	0	0	0	0		9199	
TOC	Toc (Carbone Organ.)	mg/l	0	0	N	0		1325	
TOLUENE	Toluene	microg/l	0	0	0	0.15		1278	700
TRES	Temp.Determ. R.Secs	Degres Celsius	N	N	N	0		9201	
TRIADIME	Triadimefon	microg/l	0	0	0	0.07	0.1	9202	0.1
TRICLANI	Trichloroaniline	microg/l	0	0	0	0		9203	
TRIETHYG	Triethylene Glycol	mg/l	0	0	0	0	10	9217	
TURBF	Turbidite Formazine	Unites Formazine	N	0	N	0		1296	
TURBJ	Turbidite Jackson	Unites Jackson	N	0	N	0		1300	
TURBM	Turbidite Mastic	Gouttes de mastic	N	0	N	0		1297	
TURBNEP	Turbidite Nephelomet	Unités NTU	N	0	0	0		1295	
TURBS	Turbidite	degres silice	N	0	0	0.09		9313	

V	V (Vanadium)	microg/l	0	О	N	0.1		1384	
VOX	Vox	microg/l	0	0	0	0.1		9311	
XYLEN.MP	Xylene (M+P)	microg/l	0	0	0	0.3		9254	500
XYLENE	Xylene	microg/l	0	0	0	0		9205	500
ZN	Zn (Zinc)	mg/l	0	0	Ν	0.01	5	1383	5

Annexe 2

Arrêté du 11 janvier 2007 relatif aux limites et références de qualité des eaux brutes et des eaux destinées à la consommation humaine

Décrets, arrêtés, circulaires

TEXTES GÉNÉRAUX

MINISTÈRE DE LA SANTÉ ET DES SOLIDARITÉS

Arrêté du 11 janvier 2007 relatif aux limites et références de qualité des eaux brutes et des eaux destinées à la consommation humaine mentionnées aux articles R. 1321-2, R. 1321-3, R. 1321-7 et R. 1321-38 du code de la santé publique

NOR: SANP0720201A

Le ministre de la santé et des solidarités,

Vu la directive 75/440/CEE du Conseil du 16 juin 1975 modifiée concernant la qualité requise des eaux superficielles destinées à la production d'eau alimentaire dans les Etats membres;

Vu la directive 98/83/CE du Conseil du 3 novembre 1998 relative à la qualité des eaux destinées à la consommation humaine;

Vu le code de la santé publique, notamment ses articles R. 1321-1 à R. 1321-63;

Vu l'avis de l'Agence française de sécurité sanitaire des aliments en date du 30 mars 2006,

Arrête :

6 février 2007

- Art. 1^{ex}. Les limites et références de qualité des eaux destinées à la consommation humaine, à l'exclusion des eaux conditionnées, sont définies en annexe I du présent arrêté.
- Art. 2. Les limites de qualité des eaux brutes utilisées pour la production d'eau destinée à la consommation humaine, à l'exclusion des eaux de source conditionnées, fixées pour l'application des dispositions prévues aux articles R. 1321-7 (II), R. 1321-17 et R. 1321-42 sont définies en annexe II du présent arrêté.
- Art. 3. Les limites de qualité des eaux douces superficielles utilisées pour la production d'eau destinée à la consommation humaine, à l'exclusion des eaux de source conditionnées, fixées pour l'application des dispositions prévues aux articles R. 1321-38 à R. 1321-41 sont définies en annexe III du présent arrêté.
- Art. 4. I. Les paramètres pour lesquels l'avis de l'Agence française de sécurité sanitaire des aliments mentionné à l'article R. 1321-7 (II) est requis en cas de non-respect des limites de qualité des eaux brutes utilisées pour la production d'eau destinée à la consommation humaine sont définis à l'annexe II du présent arrêté.
- II. Les paramètres pour lesquels le plan de gestion des ressources en eau prévu à l'article R. 1321-42 est requis sont définis à l'armexe II du présent arrêté.
- Art. 5. Le directeur général de la santé est chargé de l'exécution du présent arrêté, qui sera publié au Journal officiel de la République française.

Fait à Paris, le 11 janvier 2007.

Pour le ministre et par délégation : La sous-directrice de la gestion des risques des milieux, J. BOUDOT

Texte 17 sur 121

ANNEXE I

LIMITES ET RÉFÉRENCES DE QUALITÉ DES EAUX DESTINÉES À LA CONSOMMATION HUMAINE, À L'EXCLUSION DES EAUX CONDITIONNÉES

I. - Limites de qualité des eaux destinées à la consommation humaine

A. - Paramètres microbiologiques

PARAMÉTRES	LIMITES DE QUALITÉ	UNITÉ
Escherichia coli (E. coli)	0	/100 mL
Entérocoques	0	/100 mL

B. - Paramètres chimiques

PARAMÉTRES	LIMITES DE QUALITÉ	UNITÉS	NOTES
Acrylamide.	0,10	μţţ/L	La limite de qualité se réfère à la concentration résiduelle er monomères dans l'eau, calculée conformément aus spécifications de la migration maximale du polymère correspondant en contact avec l'eau.
Antimoine.	5,0	μg/L	
Arsenic.	10	μg/L	
Baryum.	0,70	mg/L	
Benzene.	1,0	μg/L	
Benzo[a]pyrène.	0,010	μg/L	
Bore.	1,0	mg/L	
Bromates.	10	μg/L	La valeur la plus faible possible inférieure à cette limite doit être visée sans pour autant compromettre la désinfection. La limite de qualité est fixée à 25 μg/t. Jusqu'au 25 décembre 2008 Toutes les mesures appropriées doivent être prises pour réduir le plus possible la concentration de bromates dans les eau deslinées à la consommation humaine, au cours de la périodinécessaire pour se conformer à la limite de qualité de 10 μg/L.
Cadmium.	5,0	hū/L	
Chlorure de vinyle.	0,50	μ g/ L	La limite de qualité se réfère également à la concentratio résiduelle en monomères dans l'eau, calculée conformément au spécifications de la migration maximale du polymèri correspondant en contact avec l'eau.
Chrome.	50	μg/L	
Culvre.	2,0	mg/L	
Cyanures totaux.	50	μg/L	
1,2-dichforoéthane.	3,0	µg/L	
Epichlarhydrine.	0,10	μg/L	La limite de qualité se réfère à la concentration résiduelle e monomères dans l'eau, calculée conformément au spécifications de la migration maximale du polymèr correspondant en contact avec l'eau.

6 février 2007	JOURNAL OFFICIEL	DE LA RÉPUBLIQUE	FRANÇAISE	Texte 17 sur 121
----------------	------------------	------------------	-----------	------------------

PARAMÈTRES	LIMITES DE QUALITÉ	UNITÉS	NOTES
Fluorures.	1,50	mg/L	
Hydrocarbures aromatiques polycydiques (HAP).	0,10	μ g/ L	Pour la somme des composés suivants: benzo[b]fluoranthène benzo[k]fluoranthène, benzo[ghi]pérylène indéno[1,2,3-cd]pyrène.
Mercure.	1,0	μg/L	
Total microcystines.	1,0	μg/L	Par «total microcystines», on entend la somme de toutes les microcystines détectées et quantifiées.
Nickel.	20	µg/L	
Nitrates (NO ₃ *).	50	mg/L	La somme de la concentration en nitrates divisée par 50 et de celle en nitrites divisée par 3 doit rester inférieure à 1.
Nitrites (NO ₂ -).	0,50	mg/L	En sortie des installations de traitement, la concentration er nitrites doit être inférieure ou égale à 0,10 mg/L.
Pesticides (par substance individuelle). Aldrine, dieldrine, heptachlore, heptachlorepoxyde (par substance individuelle).	0,10	µg/L µg/L	Par «pesticides», on entend: les insecticides organiques; les herbicides organiques; les fongicides organiques; les nématodides organiques; les acarticides organiques; les acarticides organiques; les acorticides organiques; les produits antimotissures organiques; les produits apparentés (notamment les régulateurs de croissance) telleus métabolites, produits de dégradation et de réaction pertinents.
Total pesticides.	0,50	μg/L	Par «total pestidides», on entend la somme de tous les pestidides individualisés détectés et quantifiés.
Plomb.	10	μg/L	La limite de qualité est fixée à 25 µg/L jusqu'au 25 décembre 2013. Les mesures appropriées pour réduire progressivement le concentration en plomb dans les eaux destinées à li consommation humaine au cours de la période nécessaire pou se conformer à la limite de qualité de 10 µg/L sont précisées au artides R. 1321-55 et R. 1321-45 (arrâté d'application). Lors de la mise en œuvre des mesures destinées à atteinde cattivaleur, la priorité est donnée aux cas où les concentrations et plomb dans les eaux destinées à la consommation humaine son les plus élevées.
Sélénium.	10	μg/L	
Tétrachloroéthylène et trichloro- éthylène.	10	μg/L	Somme des concentrations des paramètres spécifiés.
Total trihalométhanes (THM).	100	Ngų	La valeur la plus faible possible inférieure à cette valeur doit être visée sans pour autant compromettre la désinfection. Par a tote trihalométhanes e, on entend la somme de: chloroforme bromoforme, dibromochlorométhane et bromodichlorométhane. La limite de qualité est fixée à 150 µg/L jusqu'au 25 décembre 2006 Toutes les mesures appropriées doivent être prises pour réduin le plus possible la concentration de THM dans les eaux destinée à la consommation humaine, au cours de la période nécessain pour se conformer à la limité de qualité.

6 février 2007	JOURNAL OFFICIE	L DE LA RÉPUBLIQUE FRANÇA	SE Texte 17 sur 121
----------------	-----------------	---------------------------	---------------------

PARAMÈTRES	LIMITES DE QUALITÉ	UNITÉS	NOTES
Turbidté.	1,0	NFU	La limite de qualité est applicable au point de mise en distributior pour les eaux visées à l'aricle R. 1321-37 et pour les eau d'origine souteraine provenant de milleux fissurés présentar une turbidité périodique importante et supérieure à 2.0 NFU. E cas de mise en œuvre d'un traitement de neutralisation ou d'reminéralisation, la limite de qualité s'applique hor augmentation éventuelle de turbidité due au traitement. Pour les installations qui sont d'un débit inférieur à 1000 m/§ o qui desservent des unités de distribution de moins d 5000 habitants, la limite de qualité est fixée à 2.0 NFU jusqu'a 25 décembre 2008. Toutes les mesures appropriées doivent êtr prises pour réduire le plus possible la turbidité, au cours de 1 période nécessaire pour se conformer à la limite de qualité d 1,0 NFU.

II. - Références de qualité des eaux destinées à la consommation humaine

A. - Paramètres microbiologiques

PARAMÉTRES	RÉFÉRENCES DE QUALITÉ	UNITÉ	NOTES
Bactéries coliformes.	0	/100 mL	
Bactéries sulfitoréductrices y compris les spares.	0	/100 mL	Ce paramètre doit être mesuré lorsque l'eau est d'origine superficielle ou influencée par une eau d'origine superficielle. Er cas de non-respect de cette valeur, une enquête doit être menée sur la distribution d'eau pour s'assurer qu'il n'y a aucun dange potentiel pour la santé humaine résultant de la présence de micro-organismes pathogènes, par exemple Cryptosporidium.
Numération de germes aérobles revivifiables à 22 °C et à 37 °C.			Variation dans un rapport de 10 par rapport à la valeur habituelle

B. - Paramètres chimiques et organoleptiques

PARAMÉTRES	RÉFÉRENCES DE QUALITÉ	UNITÉS	NOTES
Aluminium total.	200	μg/L	A l'exception des eaux ayant subi un traitement thermique pour la production d'eau chaucle pour lesquelles la valeur de 500 μg/L (Al) ne doit pas être dépassée.
Ammonium (NH ₄ *).	0,10	mg/L	S'il est démontré que l'ammonium a une origine naturelle, la valeur à respecter est de 0,50 mg/L pour les eaux souterraines.
Carbone organique total (COT).	2,0 et aucun changement anormal	mg/L	
Oxydabilité au permanganate de potassium mesurée après 10 minutes en milieu acide.	5,0	mg/L O ₂	
Chlore libre et total.			Absence d'odeur ou de saveur désagréable et pas de changement anormal.
Chlorites.	0,20	mg/L	Sans compromettre la désinfection, la valeur la plus faible possible doit être visée.
Chlorures.	250	mg/L	Les eaux ne doivent pas être corrosives.
Conductivité.	\geq 180 et \leq 1000 Ou \geq 200 et \leq 1100	µS/cm à 20 °C µS/cm à 25 °C	Les eaux ne doivent pas être corrosives.

6 février 2007 JOURNAL OFFICIEL DE LA RÉPUBLIQUE FRANÇAISE Texte 17 sur 121

PARAMÈTRES	RÉFÉRENCES DE QUALITÉ	UNITÉS	NOTES
Couleur.	Acceptable pour les consommateurs et aucun changement anormal notamment une couleur inférieure ou égale à 15	mg/L (PI)	
Culvre.	1,0	mg/L	
Equilibre calcocarbonique.	Les eaux dolvent être à l'équillbre calcocarbonique ou légèrement incrustantes		
Fer total.	200	μg/L	
Manganèse.	50	μ g/L	
Odeur.	Acceptable pour les consommateurs et aucun changement anormal, notamment pas d'odeur détectée pour un taux de dilution de 3 à 25 °C		
pH (concentration en ions hydrogène).	≥ 6,5 et ≤ 9	unités pH	Les eaux ne doivent pas âtre agressives.
Saveur.	Acceptable pour les consommateurs et aucun changement anormal, notamment pas de saveur détectée pour un taux de dilution de 3 à 25 °C		
Sedium.	200	mg/L	
Sulfates.	250	mg/L	Les eaux ne doivent pas être corrosives.
Température.	25	∘C	A l'exception des eaux ayant subi un traitement thermique pour li- production d'eau chaude. Cette valeur ne s'applique pas clans les départements d'outre-mei
Turbichté.	0,5	NFU	La référence de qualité est applicable au point de mise et distribution, pour les eaux visées à l'article R. 1321-37 et pour le eaux d'origine souterraine provenant de millieux fissuré présentant une turbidité périodique importante et supérieure 2,0 NFU. En cas de mise en œuvre d'un traitement dineutralisation ou de reminéralisation, la référence de qualité s'applique hors augmentation éventuelle de turbidité due ai traitement.
	2	NFU	La référence de qualité s'applique aux robinets normalemen utilisés pour la consommation humaine.

C. - Paramètres indicateurs de radioactivité

PARAMÈTRES	RÉFÉRENCES DE QUALITÉ	UNITÉS	NOTES
Activité alpha globale.			En cas de valeur supérieure à 0,10 Bq/t_ il est procédé à l'analyse des radionudéides spécifiques définis dans l'arrêté mentionné à l'article R. 1321-20.
Activité bêta globale résiduelle,			En cas de valeur supérieure à 1,0 Bq,L, il est procédé à l'analyse des radionudéides spécifiques définis dans l'arrêté mentionné à l'article R. 1321-20.

6 février 2007	JOURNAL OFFICIE	L DE LA RÉPUBLIQUE FRANÇAISE	Texte 17 sur 121
----------------	-----------------	------------------------------	------------------

PARAMÈTRES	RÉFÉRENCES DE QUALITÉ	UNITÉS	NOTES
Dose totale indicative (DTI).	0,10	mSv/an	Le calcul de la DTI est effectué selon les modalités définies à l'article R. 1321-20.
Tritium.	100	Bq/L	La présence de concentrations élevées de tritium dans l'eau peut être le témoin de la présence d'autres radionudéides artificiels. En cas de dépassement de la référence de qualité, il est procédé à l'analyse des radionudéides spécifiques définis clans l'arrêté mentionné à l'article R. 1321-20.

ANNEXE II

LIMITES DE QUALITÉ DES EAUX BRUTES DE TOUTE ORIGINE UTILISÉES POUR LA PRODUCTION D'EAU DESTINÉE À LA CONSOMMATION HUMAINE, À L'EXCLUSION DES EAUX DE SOURCE CONDITIONNÉES, FIXÉES POUR L'APPLICATION DES DISPOSITIONS PRÉVUES AUX ARTICLES R 1321-7 (II), R 1321-17 ET R 1321-42

GROUPES DE PARAMÉTRES	PARAMÈTRES	LIMITES de qualité	UNITÉS
Paramètres organoleptiques.	Couleur (Pt) (1).	200	mg/L
Paramètres physico-chimiques liés à la structure naturelle des eaux.	Onlorures (CI-) (1).	200	mg/L
	Sodium (Na¹) (1).	200	mg/L
	Sulfates (SQ ₂ ²) (1).	250	mg/L
	Taux de saturation en oxygène dissous pour les eaux superficielles (O ₂) (1).	< 30	%
	Température (1) (2).	25	∘C
Paramètres concernant les substances indésirables.	Agents de surface réagissant au bleu de méthylène (lauryl-sulfate de sodium).	0,50	mg/L
	Ammonium (NH _a *).	4,0	mg/L
	Baryum (Ba) pour les eaux superficielles.	1,0	mg/L
	Carbone organique total (COT) (1) (3).	10	mg/L
	Hydrocarbures dissous ou émulsionnés.	1,0	mg/L
	Nitrates pour les eaux superficielles (NO $_3$): Nitrates pour les autres eaux (NO $_5$):	50 100	mg/L
	Phénois (indice phénoi) (C ₁ H ₂ OH).	0,10	mg/L
	Zinc (Zn).	5,0	mg/L
Paramètres concernant les substances toxiques.	Arsenic (As).	100	μg/L
	Cadmium (Cd).	5,0	μg/L
	Chrome total (Cr).	50	μg/L
	Cyanures (CN ⁻).	50	μg/L
	Hydrocarbures aromatiques polycycliques (HAP): Somme des composés suivants: fluoranthène, benzo[b]fluoranthène, benzo[k]fluoranthène, benzo[a]pyrène, benzo[g,h,i]pérylène et indéno[1,2,3-dd]pyrène.	1,0	Дри

JOURNAL OFFICIEL DE LA RÉPUBLIQUE FRANÇAISE 6 février 2007 Texte 17 sur 121

GROUPES DE PARAMÈTRES	PARAMÉTRES	LIMITES de qualité	UNITES
	Mercure (Hg).	1,0	μg/L
	Plomb (Pb).	50	μg/L
	Sélénium (Se).	10	μg/L
Pesticides.	Par substances individuelles, y compris les métabolites.	2,0	μg/L
	Total.	5,0	μg/L
Paramètres microbiologiques.	Entérocoques.	10 000	/100 mL
	Escherichia coll.	20 000	/100 mL

⁽¹⁾ L'avis de l'Agence française de sécurité sanitaire des aliments mentionné à l'article R. 1321-7 (III) n'est pas requis pour les paramètres otés (1). Toutefois, l'avis de l'Agence française de sécurité sanitaire des aliments est sollicité lorsque la ressource en eau utilisée est de l'eau

ANNEXE III

LIMITES DE QUALITÉ DES EAUX DOUCES SUPERFICIELLES UTILISÉES POUR LA PRODUCTION D'EAU DESTINÉE À LA CONSOMMATION HUMAINE, À L'EXCLUSION DES EAUX DE SOURCE CONDITIONNÉES, FIXÉES POUR L'APPLICATION DES DISPOSITIONS PRÉVUES AUX ARTICLES R 1321-38 À R 1321-41

Les eaux doivent respecter des valeurs inférieures ou égales aux limites ou être comprises dans les intervalles figurant dans le tableau suivant sauf pour le taux de saturation en oxygène dissous (G: valeur guide ; I: valeur limite impérative).

GROUPES de paramètres	PARAMÉTRES	A1		Az		Аз		UNITÉS
10 VALUE 10 VA		G	į.	G	Ţ	G	1	
Paramètres organoleptiques.	Couleur (Pt).	10	20	50	100	50	200	mg/L
	Odeur (facteur de dilution à 25 °C).	3		10		20		
Paramētres physico- chimiques lies à la	Chlorures (CF).	200		200		200		mg/L
structure naturelle des eaux.	Conductivité.	1 000 ou 1 100		1 000 ou 1 100		1 000 ou 1 100		μS/cm a 20 °C μS/cm a 25 °C
	Demande biochimique en oxygène (DBO _d) à 20 °C sans nitrification (O ₂).	< 3		< 5		< 7		mg/L
	Demande chimique en oxygène (DCO) (O ₂).					30		mg/L
	Matières en suspension.	25						mg/L
	рН.	6,5-8,5		5,5-9		5,5-9		unités ph
	Sulfates (SO ₄ 2).	150	250	150	250	150	250	mg/L

le mer. (2) La limite de qualité pour le paramètre température ne s'applique pas dans les départements d'outre-mer. (3) Le plan de gestion des ressources en eau prévu à l'article R. 1321-42 n'est pas requis pour les paramètres notés (3).

GROUPES de paramètres	PARAMETRES	A1		A2		Аз		UNITES
		G	T.	G	1	G	1	
	Taux de saturation en oxygène dissous (O ₂).	> 70		> 50		> 30		%
	Température.	22	25	22	25	22	25	°C
Paramètres concernant les substances indésirables.	Agents de surface réagissant au bleu de méthylène (lauryl-sulfate de sodium).	0,20		0,20		0,50		mg/L
	Ammonium (NH,*).	0,05		-1	1,5	2	4	mg/L
	Azote Kjeldhal (N).	1		2		3		mg/L
	Baryum (Ba),		0,1		1		1	mg/L
	Bore (B).	1		1		1		mg/L
	Cuivre (Cu).	0,02	0,05	0,05		1		mg/L
	Fer dissous sur échantillon filtré à 0,45 μm.	0,1	0,3	1	2	1		mg/L
	Fluorures (F-).	0,7/1	1,5	0,7/1,7		0,7/1,7		mg/L
	Hydrocarbures dissous ou émulsionnés.		0,05		0,2	0,5	1	mg/L
	Manganèse (Mn).	0,05		0,1		1		mg/L
	Nitrates (NO ₃).	25	50		50		50	mg/L
	Phénois (indice phénoi) (C ₆ H ₆ OH).		0,001	0,001	0,005	0,01	0,1	mg/L
	Phosphore total (P ₂ O ₅).	0,4		0,7		0,7		mg/L
	Substances extractibles au chloroforme.	0,1		0,2		0,5		mg/L
	Zinc (Zn).	0,5	3	1	5	1	5	mg/L
Paramètres concernant les substances toxiques.	Arsenic (As).		10		50	50	100	Лрц
	Cadmium (Cd).	1	5	9	5	1	5	μg/L
	Chrome total (Cr).		50		50		50	μg/L
	Cyanures (CN+).		50		50		50	μg/L
	Hydrocarbures aromatiques polycydiques (HAP): Somme des composés sulvants: fluoranthène, benzo[b]fluoranthène, benzo[k]fluoranthène, benzo[a]pyrène, benzo[g,h,i]pérylène et indéno[12,3-cd]pyrène.		0,2		0,2		1,0	μg/L
	Mercure (Hg).	0,5	1	0,5	1	0,5	1	μg/L
	Plomb (Pb).		10		50		50	μg/L

6 février 2007	JOURNAL OFFICIEL DE LA RÉPU	JBLIQUE FRANÇAISE	Texte 17 sur 121
0 1641161 2001	OCCUPATION DE LA MEIN	DEIGOLITATION	16At6 17 801 12 1

GROUPES de paramètres	PARAMÉTRES							
		A1		A2		Аз		UNITÉS
		G	L	G	1	G	1	
	Sélénium (Se).		10		10	9	10	μg/L
Pesticides.	Par substances individuelles, y compris les métabolites.		0,1 (1, 2)		0,1 (1,2)		2	μg/L
	Total.		0,5 (2)		0,5 (2)		5	μg/L
Paramètres microbiologiques.	Bactéries coli formes.	50		5 000		50 000		/100 mL
	Entérocoques.	20		1 000		10 000		/100 mL
	Escherichia coli,	20		2 000		20 000		/100 mL
	Salmonelles.	Absent dans 5 000 mL		Absent dans 1 000 mL				

⁽¹⁾ Pour l'aldrine, la dieldrine, l'heptachlore et l'heptachlorepoxyde, la limite de qualité est de 0,03 µg/L.
(2) Ces valeurs ne concernent que les eaux superficielles utilisées directement, sans dilution préalable.
En cas de dilution, il peut être fait appel à des eaux de qualités différentes, le taux de dilution devant être calculé au cas par cas.

Centre scientifique et technique 3, avenue Claude-Guillemin BP 36009

45060 – Orléans Cedex 2 – France Tél. : 02 38 64 34 34 **Service géologique régional Lorraine** 1, avenue du Parc de Brabois

54500 – Vandoeuvre-lès-Nancy – France Tél. : 03 83 44 81 49