
Réf : 2003/243-11/2003 Version 1 du 20 novembre 2003 Page 1/44

Bassin versant de l'Isch et du Bruchbach Actualisation du schéma directeur d'assainissement

ACTUALISATION DU SCHEMA DIRECTEUR D'ASSAINISSEMENT DES COMMUNES DU BASSIN VERSANT DE L'ISCH ET DU BRUCHBACH

Rapport phase 2 Evaluation de la qualité du milieu récepteur

A L'ATTENTION DE

Réf : 2003/243-11/2003 Version 1 du 20 novembre 2003 Page 2/44

Bassin versant de l'Isch et du Bruchbach Actualisation du schéma directeur d'assainissement

BUREAU D'ETUDE : GROUPE MAPE DEPARTEMENT MA2E

31, RUE PRINCIPALE 67700 OTTERSWILLER

TEL: 03.88.91.31.92 FAX: 03.88.91.32.95

Vers.	Rédacteur	Vérificateur Approbateur	Date	Modifications
	Nom			
1	O. ROGEZ	L. MEYER	20/11/03	Création du document

Réf : 2003/243-11/2003 Version 1 du 20 novembre 2003 Page 3/44

Bassin versant de l'Isch et du Bruchbach Actualisation du schéma directeur d'assainissement

SOMMAIRE

1. OBJEC	CTIF DE L'ETUDE	4
) DDFIE	EVEMENTS ET MESURES SUR LE MILIEU NATUREL	-
2. FRELE	LVENIENTS ET MESUKES SUK LE MILIEU NATUKEL	
2.1. ME	ETHODOLOGIE MISE EN ŒUVRE	5
2.1.1.	Analyses physico-chimiques du milieu récepteur	
2.1.2.	Analyses hydrobiologiques	
2.1.3.	Localisation des points de mesures	
2.2. AN	IALYSES PHYSICO-CHIMIQUE ET MESURES DE DEBITS	
2.2.1.	Présentation des résultats	
2.2.2.	Résultats obtenus	
2.3. AN	IALYSES IBGN	11
3. EVALU	UATION DES FLUX POLLUANTS MAXIMUM ADMISSIBLES	12
3.1. ME	ETHODOLOGIE MISE EN OEUVRE	12
3.1.1.	Sectorisation du bassin versant	
3.1.2.	Calcul des flux maximums admissibles	14
3.1.3.	Calcul de la pollution future générée par les communes	
<i>3.1.4</i> .	Comparaison des Fma à la pollution générée	
3.2. CA	S 1: APPROCHE GLOBALE A L'ECHELLE DU BASSIN VERSANT DE L'ISCH	16
3.2.1.	Présentation des résultats	
3.2.2.	Commentaires	
3.3. CA	S 2 : APPROCHE LOCALE A L'ECHELLE DE SOUS BASSIN VERSANT	
3.3.1.	Présentation des résultats	20
3.3.2.	Commentaires	30
4 CONCI	LUSION	32

Réf : 2003/243-11/2003 Version 1 du 20 novembre 2003 Page 4/44

Bassin versant de l'Isch et du Bruchbach Actualisation du schéma directeur d'assainissement

1. OBJECTIF DE L'ETUDE

L'actualisation du Schéma Directeur d'Assainissement établit en août 1997 par SAGE des communes situées dans le bassin versant de l'Isch a pour objectif :

- d'identifier la nature et l'importance des pollutions à traiter (domestique, agricole, industriel),
- de dresser un état actuel de la qualité des cours d'eau et de l'assainissement,
- d'examiner les solutions à mettre en œuvre en vue d'atteindre les objectifs de qualité arrêtés sur les cours d'eau,
- d'établir un bilan technique et économique des différentes solutions envisagées.

Il se restreint à l'étude de l'examen de la faisabilité des solutions collectives d'assainissement et vise à définir le périmètre optimal des agglomérations au sens du décret du 03/06/1999.

Les solutions proposées devront garantir :

- la préservation ou la reconquête de la qualité du milieu naturel,
- la résolution effective des problèmes liés à l'évacuation et au traitement des eaux usées,
- la protection des ressources en eau potable.
- la mise en œuvre de technologies respectueuses de l'environnement,
- la réalisation d'ouvrage d'épuration s'intégrant parfaitement à l'environnement immédiat
- la réduction effective des pollutions d'origine agricole, artisanale ou industrielle.

L'objectif principal de la diminution des rejets polluants est le respect des conditions définies par la carte des objectifs de qualité des cours d'eau et la préservation de la nappe contre les pollutions.


L'étude diagnostic comprend les trois phases suivantes :

- Phase 1 : acquisition de données
- Phase 2 : évaluation de la qualité du milieu récepteur
- Phase 3 : schéma directeur d'assainissement et d'épuration

Le présent document s'inscrit dans la phase 2 de l'actualisation du schéma directeur d'assainissement. Cette phase permet de :

- d'évaluer l'état actuel de la qualité du milieu récepteur : l'Isch et ses affluents et de constater l'écart qu'il existe entre la situation actuelle et les objectifs de qualité,
- de préciser les secteurs de rivières où la dégradation de la qualité doit être traitée prioritairement,
- d'évaluer la part de responsabilité des rejets d'origine domestique (communes), agricole, artisanale ou industrielles dans les dégradations constatées.

Le présent document présente la qualité des cours d'eau observé suite aux mesures et prélèvements menées sur le milieu naturel ainsi que l'évaluation des flux maximums admissibles par le milieu récepteur.

Réf : 2003/243-11/2003 Version 1 du 20 novembre 2003 Page 5/44

Bassin versant de l'Isch et du Bruchbach Actualisation du schéma directeur d'assainissement

2. PRELEVEMENTS ET MESURES SUR LE MILIEU NATUREL

2.1. Méthodologie mise en œuvre

Deux types d'investigations ont été mis en œuvre pour atteindre les objectifs de cette phase d'étude :

2.1.1. Analyses physico-chimiques du milieu récepteur

Une campagne de terrain concernant onze points de mesures a été réalisée. Elle est basée sur la réalisation simultanée de prélèvements d'eau et de mesures de débits, afin de définir la qualité physico-chimique de l'eau en concentrations et en flux. Les analyses effectuées ont porté sur :

- Paramètres in situe : O2 dissous, pH, conductivité, température
- Paramètres sur échantillons : DCO, DBO5, MEST, NH4, NTK, NO2, NO3, Ptotal, Phosphates

Les échantillons ont été conservés au frais (4°C) puis envoyés au laboratoire ASPECT situé à Ennery pour l'analyse des paramètres sur échantillons.

2.1.2. Analyses hydrobiologiques

Onze analyses IBGN ont été réalisées conformément à la norme AFNOR NF-T-90-350, relative à la détermination de l'IBGN.

2.1.3. Localisation des points de mesures

- 1 L'Isch à l'aval du terrain de sport de Weyer (au droit du pont situé à proximité du foyer rural)
- 2 L'Isch, à l'aval du ponceau situé au lieu « Moulin de l'Isch »
- 3 L'Isch en aval du rejet de la STEP du SIVOM de la vallée de l'Isch à Weyer (au 1^{er} ponceau après la STEP)
- 4 L'Isch en aval de Hirschland (aval du pont direction Rauwiller)
- 5 L'Isch en aval de Baerendorf, (amont du pont direction Postroff)
- 6 L'Isch en aval de Postroff, au niveau de la passerelle, à 500m après le rejet de la STEP
- 7 L'Isch en amont de la confluence avec la Sarre (sur le ban de la commune de Wolfskirchen, au niveau du Gué)
- 8 Le Brueschbach, en aval de la confluence du Prichmattengraben et du ruisseau de Grossmatt
- 9 Le Brueschbach en aval de la confluence avec le ruisseau de Bettelmatt
- 10 Le Brueschbach au droit du « Vieux Moulin » en amont de Goerlingen
- 11 Le Brueschbach à l'aval de la confluence du canal de fuite du « moulin de Hellering »

La carte ci-jointe fait figurer les différents points de mesures. La description des points de mesures est donnée en annexe 1 : Description des points de mesures sur le milieu récepteur.

Réf : 2003/243-11/2003 Version 1 du 20 novembre 2003 Page 7/44

Bassin versant de l'Isch et du Bruchbach Actualisation du schéma directeur d'assainissement

2.2. Analyses physico-chimique et mesures de débits

2.2.1. <u>Présentation des résultats</u>

Les mesures ont été réalisées le 18 septembre 2003 pour les points 6, 7, 8, 9, 10 et 11 le soir après 17h. Les mesures sur les points 1, 2, 3, 4 et 5 ont été réalisées le 19 septembre 2003, le matin avant 9h.

Le tableau suivant présente les résultats obtenus sur les différents points de mesures. Il comprend:

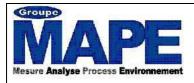
- le débit mesuré
- les concentrations mesurées sur le milieu récepteur,
- la classe de qualité physico chimique
- le(s) paramètre(s) déclassant(s),
- la classe de qualité « azote »
- la classe de qualité « phosphore »

Les classes de qualité « physico-chimique », « azote » et « phosphore » font référence à la grille d'appréciation de la qualité générale de l'eau donnée ci-après.

2.2.2. Résultats obtenus

Les conditions climatiques exceptionnellement sèches observées durant l'été ont eu pour conséquence un étiage 2003 particulièrement faible, inférieur au QMNA1/5.

La qualité observée, établie sur la base des résultats physico-chimique et par comparaison avec la grille de qualité des cours d'eau, est représentée sur la carte ci-jointe.


L'objectif de qualité fixé par les arrêtés préfectoraux du 10 juin 1985 pour la Moselle et du 13 octobre 1985 pour le Bas-Rhin pour le secteur d'étude est de 2.

La qualité physico-chimique observée varie de 1A à 2. Le facteur déclassant est généralement le taux de saturation en O2 qui varie entre 64 et 83% lorsqu'il est le facteur déclassant. En effet, le faible débit des ruisseaux allié à un fort phénomène d'eutrophisation ont nettement joué sur la saturation en oxygène, ce qui peut expliquer en partie le niveau de qualité observé.

La pollution azotée est également présente puisque celle-ci varie de la qualité N1 (pollution modérée) à N3 (pollution importante). Le principal facteur déclassant est NO3 (sur 10 des 11 onze points de mesures) qui varie de 9 à 27 mg/l lorsqu'il est le facteur déclassant.

On note également une importante pollution au phosphore généralisée sur l'ensemble du secteur d'étude puisque la classe de qualité est P4 (pollution excessive) pour 10 des 11 points de mesures. L'utilisation des lessives, produits détergents et les activités agricoles sont généralement à l'origine d'une pollution en phosphore.

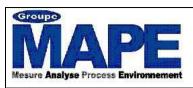
Les nitrates et les phosphates sont des substances nutritives pour les végétaux. En quantités trop importantes, elles peuvent être à l'origine de leur développement anarchique (eutrophisation du milieu aquatique), qui entraîne une consommation accrue de l'oxygène dissous, et l'asphyxie des organismes aquatiques.

Réf : 2003/243-11/2003 Version 1 du 20 novembre 2003 Page 8/44

Bassin versant de l'Isch et du Bruchbach Actualisation du schéma directeur d'assainissement

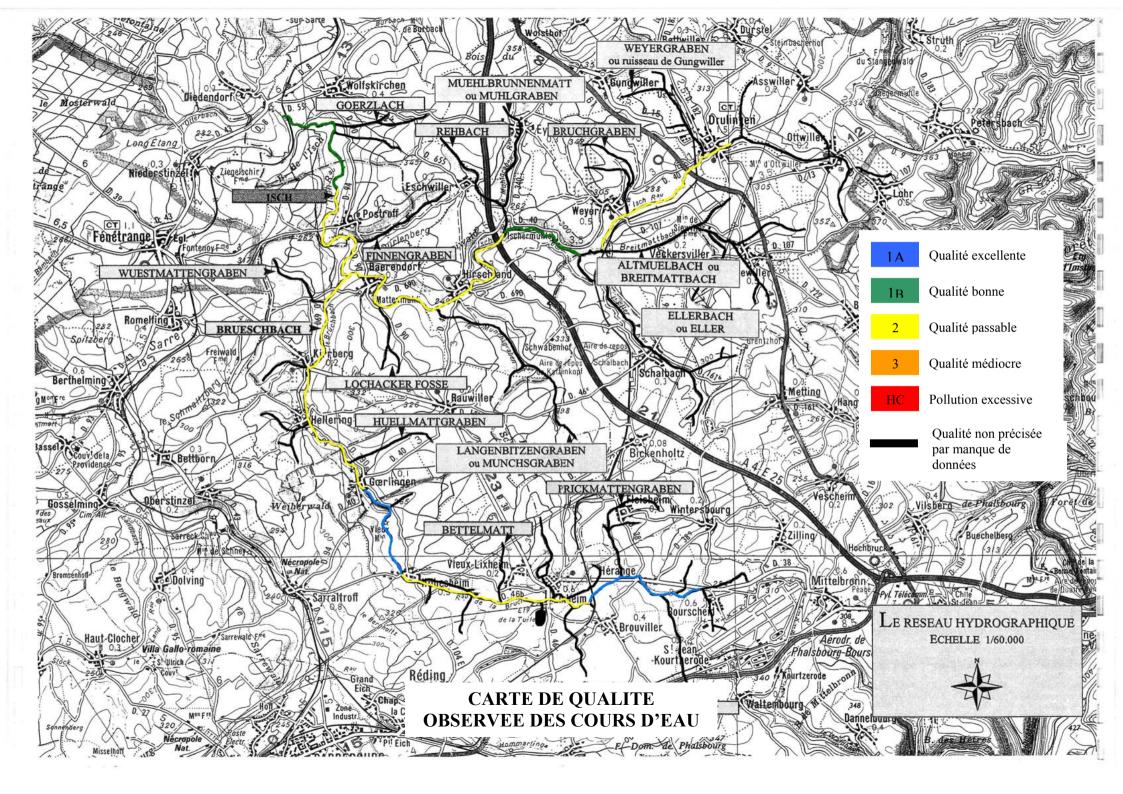
Critères d'appréciation de la qualité générale de l'eau

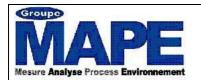
		S0	S1	S2	S3	S4
I	1 Conductivite S/cm à 20°C	400	750	1500	3000	>3000
	2 Dureté totale ° français	15	30	50	100	>100
	3 Cl mg/l	100	200	400	1000	>1000
	4 Capacité d'adsorption du Na (1)	2	4	8	>8	


		1A	1B	2	3
II	5 Température	< 20°	20 à 22°	22 à 25°	25 à 30°
III	6 O2 dissous en mg/l (2) O2 dissous en % sat.	7 >90%	5 à 7 70 à 90%	3 à 5 50 à 70%	milieu aérobie à maintenir en permanence
	7 DBO5 eau brute mgO2/l	<3	3 à 5	5 à 10	10 à 25
	8 Oxydabilité mg/O2/l	<3	3 à 5	5 à 8	
	9 DCO eau brute mgO2/l	<20	20 à 25	25 à 40	40 à 80
IV	10 NO3 mg/l			44	44 à 100
	11 NH4 mg/l	< 0.1	0.1 à 0.5	0.5 à 2	2 à 8
	12 N total mg/l (Kjeldahl)				
V	13 Saprobies	oligosaprobe	β mésosaprobe	α mésosaprobe	polysaprobe
	14 Ecart de l'indice biotique par rapport à l'indice normal (3)	1	2 ou 3	4 ou 5	6 ou 7
VI	15 Fer total mg/l précipité et en sol	< 0.5	0.5 à 1	1 à 1.5	
	16 Mn total mg/l	< 0.1	0.1 à 0.25	0.25 à 0.50	
	17 MEST mg/l (4)	< 30	< 30	< 30 (m dec < 0.5 ml/l)	30 à 70 (m dec < 1 ml/l)
VII	18 Couleur mg Pt/l	< 10 (absence de col	10 à 20 loration visible)	20 à 40	40 à 80
	19 Odeur	1	rceptible	Ni saveur ni odeur anormale	Pas d'odeur percptible à distance du cours d'eau
	20 Subst. extractibles au chlorof. mgl	< 0.2	0.2 à 0.5	0.5 à 1	>1
	21 Huiles et graisses	né	ant	traces	Présences
	22 Phénols mg/l	< 0.	.001	0.001 à 0.05	0.05 à 0.5
	23 Toxiques	Norme permissible pour la vocation la plus exigeante et en particulier pour préparation d'eau alimentaire		Traces inoffensives pour la survie du poisson	
	24 pH	6.5 - 8.5 6.0 - 8.5 si TH < 5°f		6.0 - 8.5	- 8.5 si TH 5°f synthèse active
VIII	25 Coliformes / 100 ml		< 5000		
	26 Esch. Coli / 100 ml		< 2000		
	27 Stapt. Fec. / 100 ml				
IX	28 Radioactivité	Catégorie l	I du SCPRI	Catégorie I	I du SCPRI

Grille pour signaler les problèmes de phosphore

	P0 Situation	P1 Pollution	P2 Pollution	P3 Pollution	P4 Pollution
	normale	modérée	nette	importante	excessive
P mg/l	< 0.1	0.1 à 0.3	0.3 à 0.6	0.6 à 1	>1


Grille pour signaler les problèmes d'azote


Formes de l'azote	N0 Situation	N1 Pollution	N2 Pollution	N3 Pollution	N4 Pollution
	normale	modérée	nette	importante	excessive
NH4 mg/l	< 0.1	0.1 à 0.5	0.5 à 2	2 à 8	>8
NO2 mg/l	< 0.1	0.1 à 0.3	0.3 à 1	1 à 2	>2
NO3 mg/l	<5	5 à 10	10 à 25	25 à 50	> 50
N Kjeldahl mg/l	< 1	1 à 2	2 à 3	3 à 10	> 10

Réf : 2003/243-11/2003 Version 1 du 20 novembre 2003 Page 9/44

	Point n°	1	2	3	4	5	6	7	8	9	10	11
	Unités		_		·			·		·	. •	
Débit	m 3/s	0,0076	0,0169	0,04	0,0403	0,0625	0,1060	0,1130	0,0260	0,0330	0,0350	0,0400
				Mesui	res in si	tu						
рН	1	8,46	9,5	8,34	9	9,45	8,8	8,4	8,2	8,4	8,2	8,22
Température	°C	14,2	12,3	14	12,2	13,8	15,4	15,5	15,4	18	17,9	15,3
Conductivité	μS/cm	665	790	800	864	850	754	840	810	925	864	743
O2 dissous	mg O2/I	6,8	7,53	7,45	6,84	6,8	9,1	8,3	12,2	10,4	9,23	6,23
saturation en O2	%	66	70	72	64	66	91	83	122	109	97	63
				sures s	ur echa	ntillon						
MEST	m g/l	5	3	5	2	2	2	4	5	21	15	9
DCO	m g O 2/I	13	7	13	9	7	9	5	9	16	12	15
DBO5	m g O 2/I	2	2	2	2	2	2	2	2	7	2	3
NO3	m g/l	4,2	15	12	11	11	9	7,9	27	14	15	10
NO2	m g/l	0,024	0,075	0,064	0,075	0,055	0,058	0,022	0,27	0,61	0,16	0,14
PO4	m g/l	0,21	0,087	2,8	1,3	0,96	0,67	0,55	0,74	1,3	1,2	0,76
NH4	m g/l	0,12	0,1	0,26	0,49	0,42	0,18	0,11	0,45	1,7	0,22	0,61
NTK	mgN/l	1	0,8	0,8	0,9	0,5	0,7	0,5	1	2,3	2,2	1,8
Pt	mgP/I	0,8	2,2	1,8	1,6	1,5	1,3	1,2	1,4	1,6	1,5	1,4
				Q	ualité							
Classe de qualité	physico-chimique	2	1B	1B	2	2	2	1B	1 A	2	1A	2
Param ètres	déclassants	Sat O2	Sat O2	Sat O2	Sat O2 pH	Sat O2	рΗ	Sat O2	1	DBO5	1	Sat O2
Classe de q	ualité "azote"	N 1	N 2	N 2	N2	N2	N 1	N 1	N 3	N2	N2	N 2
Paramètres	s déclassants	NH4 NTK	NO3	NO3	NO3	NO3	N O 3 N H 4	NO3 NH4	NO3	NO3 NO2 NH4 NTK	NO3 NTK	N O 3 N H 4
	lité "phosphore"	Р3	P4	P4	P4	P4	Р4	P4	P4	P4	P4	P4
	alité biologique											
	de l'IBGN											


Réf : 2003/243-11/2003 Version 1 du 20 novembre 2003 Page 11/44

Bassin versant de l'Isch et du Bruchbach Actualisation du schéma directeur d'assainissement

2.3. Analyses IBGN

	point 1	point 2	point 3	point 4	point 5	point 6
		Ruisseau de				
Cours d'eau	L'Isch	l'Altmuelbach	L'Isch	L'Isch	L'Isch	L'Isch
Note IBGN/20	12	10	8	11	17	13
Classe de variété	9	5	7	7	10	8
Taxon indicateur:	Leptoceridae	Sericostomatidae	Elmidae	Hydroptilidae	Brachycentridae	Ephemeridae
famille (ordre)	(trichoptères)	(coléoptères)	(coléoptères)	(trichoptères)	(trichoptères)	(ephéméroptères)
Groupe						
faunistique	4	6	2	5	8	6
Robustesse du						
prélèvement	1	4	1	1	3	2

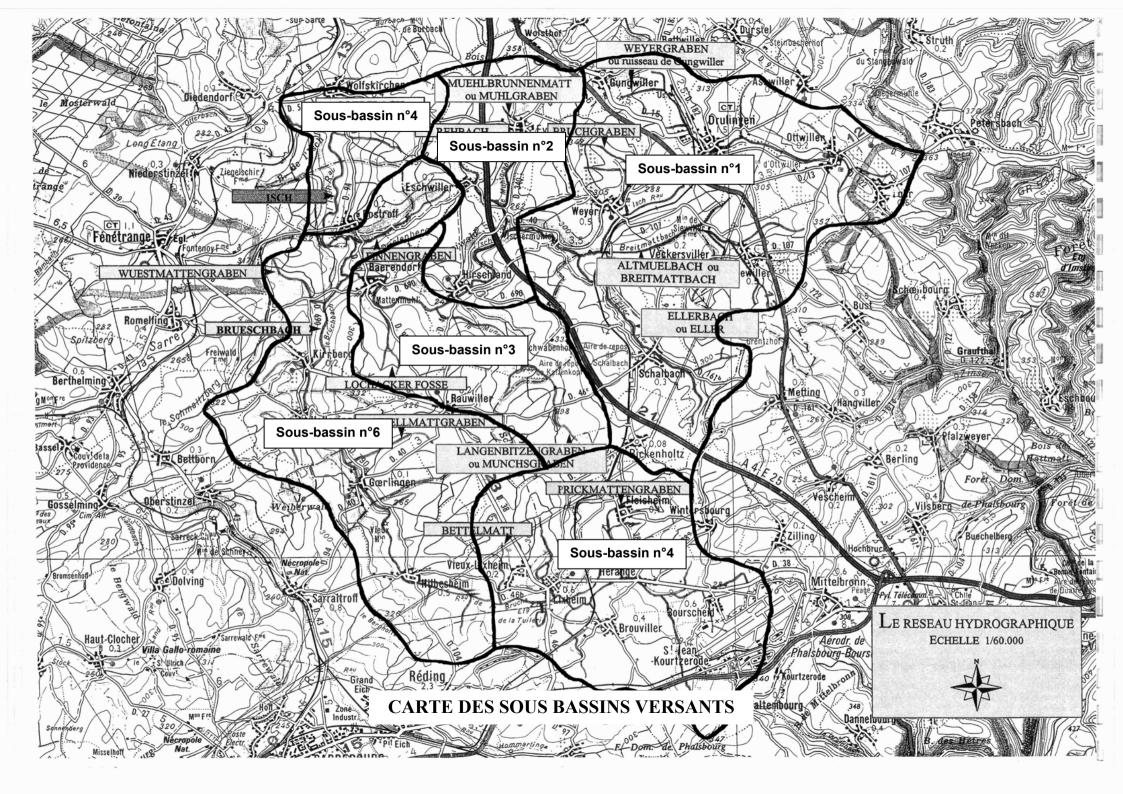
_	point 7	point 8	point 9	point 10	point 11
Cours d'eau	L'Isch	Le Bruchbach	Le Bruchbach	Le Bruchbach	Le Bruchbach
Note IBGN/20	13	8	6	6	10
Classe de variété	8	6	5	5	7
Taxon indicateur:	Ephemeridae (Hydropsychidae		gammaridae (Polycentropodida
famille (ordre)	ephéméroptères)	(trichoptères)	mollusques	amphipodes)	e (trichoptères)
Groupe					
faunistique	6	3	2	2	4
Robustesse du					
prélèvement	2	2	0	1	3

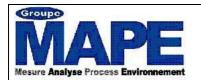
Réf : 2003/243-11/2003 Version 1 du 20 novembre 2003 Page 12/44

Bassin versant de l'Isch et du Bruchbach Actualisation du schéma directeur d'assainissement

3. EVALUATION DES FLUX POLLUANTS MAXIMUM ADMISSIBLES

3.1. Méthodologie mise en oeuvre

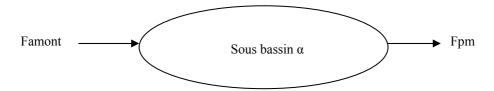

3.1.1. <u>Sectorisation du bassin versant</u>


Une première approche a été réalisée sur l'ensemble du bassin versant afin d'obtenir une approche globale de la situation.

Nous avons ensuite sectorisé le bassin versant pour essayer de mettre en évidence des problèmes locaux. Ainsi, le bassin hydrographique a été divisé en plusieurs sous bassins sur la base de nos points de prélèvements ainsi que des localisations des points de mesures de QMNA1/5. La liste des différents sous bassins est donnée dans le tableau ci-dessous et la carte ci-dessous permet de les visualiser.

	amont	aval	Communes concernées
Sous bassin n°1	Source de l'Isch	Ancien moulin de l'Isch	Lohr, Ottwiller, Drulingen, Gungwiller, Weyer, Siewiller, Veckerswiller, Bickenholtz, Schalbach
Sous bassin n°2	Ancien moulin de l'Isch	Aval d'Hirschland	Hirschland, Eschwiller, Eywiller
Sous bassin n°3	Aval d'Hirschland	Isch à l'amont du confluent du Bruchbach	Baerendorf
Sous bassin n°4	Bruchbach à l'amont du confluent de l'Isch	Isch à l'amont du confluent de la Sarre	Postroff, Wolfskirchen
Sous bassin n°5	Source du Bruchbach	Aval de Vieux-Lixheim	Bourscheid, Brouviller, Saint-Jean-Kourtzerode, Hérange, Lixheim, Vieux- Lixheim, Fleisheim
Sous bassin n°6	Aval de Vieux Lixheim	Bruchbach à l'amont du confluent de l'Isch	Rauwiller, Hilbesheim, Hellering-les-Fénétrange, Goerlingen, Kirrberg

Carte des sous bassins versants



Réf : 2003/243-11/2003 Version 1 du 20 novembre 2003 Page 14/44

Bassin versant de l'Isch et du Bruchbach Actualisation du schéma directeur d'assainissement

3.1.2. Calcul des flux maximums admissibles

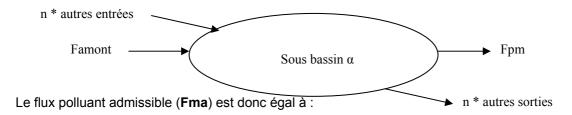
• Le flux maximum admissible, Fma, est défini comme égal à la différence des flux admissibles entre la sortie et l'entrée du sous bassin. Le schéma ci-dessous représente le cas le plus simple. On le retrouve pour les sous bassins 1, 2, 3, 5 et 6.

Le flux admissible à la sortie du sous bassin est appelé Flux polluant maximum avant déclassement (**Fpm**). Il correspond à la charge maximale acceptable par le cours d'eau avant déclassement. Il est exprimé sur les paramètres DBO5, DCO et NH4 et est calculé à partir des concentrations seuils correspondant à l'objectif de qualité et des QMNA 1/5 – débit d'étiage mensuel observé une année sur cinq. A ce QMNA 1/5, nous avons ajouté le débit théorique futur d'une STEP (**Q**_{th} **futur STEP**). L'obtention de ce débit est détaillée dans les parties 3.2. et 3.3.

Fpm = (QMNA1/5 en aval du sous bassin+Qth futur STEP) * Concentrations seuil objectif en vigueur à l'aval du sous bassin

Le flux admissible à l'entrée du sous bassin (**Famont**), correspond au flux polluant maximum avant déclassement pouvant être généré à l'amont du sous bassin d'étude. On se place ainsi dans le cas le plus défavorable tout en tenant compte des objectifs de qualité fixé à l'amont du sous bassin d'étude.

Famont = QMNA 1/5 en amont du sous bassin * Concentrations seuil objectif en vigueur à l'amont du sous bassin


L'objectif de qualité de l'Isch est fixé à 2. Par extension, l'objectif de qualité de ses affluents est également de 2. Les concentrations seuils à prendre en compte dans le calcul du Fpm et du Famont sont donc celles correspondantes à la classe de qualité 2.


Le flux polluant admissible (Fma) est donc égal à :

Fma = Fpm - Famont

 Dans certains cas, il peut y avoir en plus d'autres entrées ou sorties entre l'amont et l'aval du sous bassin (cas de confluence ou de diffluence par exemple).
Ainsi, dans le cas présents, nous avons les « autres entrées » suivantes : Le sous bassin 4 reçoit comme autres entrées les Fpm du sous bassin 3.

Nous obtenons ainsi le schéma suivant :

Réf: 2003/243-11/2003 Version 1 du 20 novembre 2003

Page 15/44

Bassin versant de l'Isch et du Bruchbach Actualisation du schéma directeur d'assainissement

Fma = Fpm - Famont + (n*autres sorties) - (n*autres entrées)

Remarques:

- Dans le cas des sous-bassins alimentés à l'amont par une source, le débit amont est considéré comme nul. En conséquence, le flux amont est considéré comme nul.
- Les Fpm et Famont sont basés sur des valeurs théoriques et réglementaires (QMNA 1/5 et concentration seuil objectif). De ce fait, les Fma déduit ne sont pas dépendant des flux polluants des sous bassin amont et sont calculés sur les bases des objectifs de qualité. Si nous avions calculés les Fpm et F amont sur la base de la pollution générée, les Fma serait à revoir dès lors que cette pollution générée est modifiée (mise aux normes de l'assainissement, implantation de nouvelles activités, diminution de l'activité agricole,...) Les conclusions de cette phase et de l'étude serait donc à revoir.

3.1.3. Calcul de la pollution future générée par les communes

Nous avons déterminé pour chaque commune de l'étude le détail des pollutions générées :

Pollution d'origine agricole : elle est évaluée d'après les données fournies par le document comment évaluer les objectifs de réduction des flux de substances polluantes d'une agglomération et les coefficients spécifiques de pollution donnés en annexe 1 de l'arrêté du 28 octobre 1975.

La pollution diffuse provenant des sols peut être négligée.

La pollution issue de l'élevage est évaluée est estimée en période d'étiage à 1% de la pollution potentielle évaluée par unité de gros bétail à :

DCO, DBO: 32 éq.ha. (1 éq.ha = 60g DBO/jour, 100gDCO/jour) (1 éq.ha. = 9g NH4/j) Azote réduit : 13 éq.ha, soit 10éq.ha. pour NH4.

Pollution d'origine domestique non collectée :

Nous considérons que 80% de la population sera raccordée à la station d'épuration future.

Le document comment évaluer les objectifs de réduction des flux de substances polluantes d'une agglomération considère que 50% de la pollution n'arrivant pas à la station d'épuration rejoint directement le milieu récepteur. (la majorité de cette pollution non collectée ne subit pas de traitement par le biais d'un assainissement autonome).

Pollution d'origine industrielle :

La pollution d'origine industrielle n'est pas intégrée pour le moment dans les bilans de pollution. Nous attendons les retours des enquêtes à destination des industriels.

Nous avons également appliquée à cette pollution directe (agricole, industrielle et domestique non collectée) un abattement de pollution du à l'auto épuration. L'auto épuration n'a pas été appliquée à la pollution collectée. La localisation des ouvrages de traitement, non définie à ce jour, conditionne la longueur du tronçon auto épuratoire (un ouvrage situé en tête de bassin versant aura une autoépuration importante alors qu'elle sera nulle si celui-ci est situé en aval). Ne pouvant définir à ce stade de l'étude leur localisation, il nous est impossible de calculer l'auto épuration sur la pollution collectée.

L'autoépuration correspond à une épuration naturelle du cours d'eau.

L'agence de l'eau Rhin-Meuse propose de retenir une réduction des flux de substances polluantes de l'ordre de 30% pour la DBO5 et de 60% pour l'azote, pour 10 km de tronçon de cours d'eau. Aucun ratio n'existe à notre connaissance dans la littérature pour les autres paramètres.

Réf : 2003/243-11/2003 Version 1 du 20 novembre 2003 Page 16/44

Bassin versant de l'Isch et du Bruchbach Actualisation du schéma directeur d'assainissement

Aussi, l'absence de tronçon homogène sur le secteur d'étude (tronçon de longueur suffisamment importante sans rejet) n'a pas permis de déterminer de ratios réels sur le cours d'eau.

En l'absence de données, les hypothèses suivantes ont donc été émises :

Le rendement sur l'azote est estimé à 60%. Nous l'estimons donc à 60% pour NH4 par 10 km.

La DCO contient en partie de la DBO. On considère donc que le rendement applicable sur la DBO5 est celui applicable à la DCO multiplié par la part de DBO dans la DCO. La part de DBO dans la DCO est obtenue en faisant le rapport des concentrations mesurées en aval de chaque sous bassin.

Pour la DBO5, Ae = 30%

Pour NH4, Ae = 60%

Pour la DCO, Ae = (Concentration DBO5 / Concentration DCO) * rendement DBO5

Les valeurs d'autoépuration sont donc à prendre avec précaution.

D'une part, les ratios utilisés sont une vague estimation de la situation réelle, faute de données exploitables.

D'autre part, on souhaite estimer l'autoépuration future après travaux.

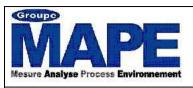
Nous avons ensuite regroupé par sous bassin les données calculées par communes.

3.1.4. Comparaison des Fma à la pollution générée

Nous avons dans un dernier temps comparé la pollution générée à laquelle nous avons appliqué les traitements minimaux réglementaires au Fma correspondant afin de savoir si un rejet était possible dans le respect des objectifs de qualité des cours d'eau.

Cette comparaison aboutit à une discussion sur les résultats et à la proposition d'orientations générales ou d'exigences renforcées.

3.2. Cas 1 : approche globale à l'échelle du bassin versant de l'Isch


3.2.1. <u>Présentation des résultats</u>

La premier tableaux présente la détermination des Q_{th} futur STEP.

Le second tableau détaille le calcul des Fma selon la méthodologie présentée précédemment en 3.1.2.

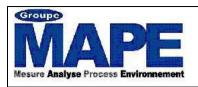
Le troisième tableau détaille la pollution générée par commune puis un tableau de synthèse résume les données par sous bassin selon la méthodologie présentée précédemment en 3.1.3.

Enfin, le tableau de synthèse final résume l'ensemble des données calculées et permet de comparer les Fma à l'ensemble de la pollution générée traitée puis auto épurée selon la méthodologie présentée précédemment en 3.1.4.

Réf : 2003/243-11/2003 Version 1 du 20 novembre 2003 Page 17/44

Bassin versant de l'Isch et du Bruchbach Actualisation du schéma directeur d'assainissement

	Unités	Bassin versant de l'Isch
Population en 2003	nbre	8757
Accroissement moyen sur 15 ans*	%	17%
Population en 2018	nbre	10164
Consommation par habitant	l/jour	130
Consommation du basin versant	m3/jour	1321
Taux de raccordement	%	80%
Population raccordée	nbre	8132
Dilution par les ECP	%	100%
Qth futur STEP avec taux de raccordement de 80% et dilution par 2**	m3/jour	2114


^{*} L'accroissement de population sur 15 ans a été défini de la façon suivante : nous avons tenu compte pour la période 2003-2008 des projets d'urbanisme prévus par les maires. Pour la période 2008-2018, nous avons estimé l'accroissement de la population à 1% par an.

**La dilution par 2 correspond à la dilution par les Eaux Claires Parasites (ECP)

Tableau d'obtention du Qth futur STEP à l'horizon 2018

		QMNA1/5 aval	Q futur Step	Concentratio n seuil	Fpm	QMNA 1/5 amont	Concentratio n seuil	Famont	Fae	Fas	Fma = Fpm - Famont+Fas- Fae	Fma majoré	Fma
		m3/s	m3/s	mg/l	kg/j	m3/s	mg/l	kg/j	kg/j	kg/j	kg/j	kg/j	EH
bassin	DBO5			10	189,6		10	1,7	0,0	0,0	187,9	281,8	4697
versant de	DCO	0,1950	0,0245	40	758,5	0,002	40	6,9	0,0	0,0	751,6	1127,4	11274
l'Isch	NH4 (N)			1,56	29,50		1,56	0,3	0,0	0,0	29,2	43,84	4871

Tableau de calcul des Fma

Réf : 2003/243-11/2003 Version 1 du 20 novembre 2003 Page 18/44

Bassin versant de l'Isch et du Bruchbach Actualisation du schéma directeur d'assainissement

		bassi	n versant de	l'Isch
	Paramètre	DBO5	DCO	NH4 (N)
population en 2018	nombre		10164	
taux de raccordement	%		80%	
nombre d'habitants raccordés	nombre		8132	
pollution domestique collectée	kg/j	487,9	813,2	73,2
nombre d'habitants non raccordés	nombre		2033	
nombre d'UGB	nombre		14370	
pollution directe domestique non collectée	kg/j	61,0	101,6	9,1
pollution directe d'origine agricole	kg/j	275,9	459,8	12,9
pollution directe d'origine industrielle	kg/j	0,0	0,0	0,0
total pollution directe après autoépuration	kg/j	298,0	542,1	16,6

Tableau de détail de la pollution générée sur le sous bassin à l'horizon 2018

	Unites	Bass	sin versant de	l'Isch
Paramètres		DBO5	DCO	NH4 (N)
Fma	kg/jour	281,8	1127,4	43,8
total pollution directe après autoépuration	kg/jour	298,0	542,1	16,6
pollution domestique collectée	kg/jour	487,9	813,2	73,2
rendement minimum réglementaire	%	90%	75%	75%
rejet STEP	kg/j	48,8	203,3	18,3
lejet 31EF	mg/l	23,1	96,2	8,7
total pollution après autoépuration	kg/jour	346,8	745,4	34,9
Fma - total pollution après autoépuration	kg/jour	-65,0	382,0	8,9

Tableau de synthèse final de comparaison des Fma et de la pollution générée

Réf : 2003/243-11/2003 Version 1 du 20 novembre 2003 Page 19/44

Bassin versant de l'Isch et du Bruchbach Actualisation du schéma directeur d'assainissement

3.2.2. Commentaires

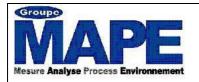
A l'échelle du bassin versant, la population en 2018 atteint 10164 habitants selon nos estimations, pour 8132 raccordés. Les exigences en terme d'épuration appliquées dans ce cas sont celles du PAR qui impose le respect des rendements et des concentrations de rejets suivants pour les ouvrages compris entre 5000 et 10000 E.H.:

Paramètres	Concentration en mg/l	Rendement en %
DCO	100	75
DBO	25	90
NH4	10	75

Ces exigences sont respectées dans le cas présent puisqu'en appliquant ces niveaux de rendement, nous obtenons des concentrations de rejets pour la DCO, DBO et NH4 respectivement de 23.1, 96.2 et 8.7 mg/l.

Cependant, la comparaison des Fma avec la pollution total après auto épuration montre que sur le paramètre DBO5, la pollution totale n'est pas admissible par le milieu récepteur

Le nombre d'UGB, calculé sur la base du recensement agricole de 2000 est de 10164 UGB.


La pollution agricole, sur laquelle il n'est pas possible d'agir représente après auto épuration :

- Sur la DBO: 87% du Flux maximal admissible
- Sur la DCO: 34% du Flux maximal admissible
- Sur NH4: 22% du Flux maximal admissible

La quasi-totalité de la pollution maximale admissible (Fma) par l'Isch sur le paramètre DBO est générée par l'agriculture.

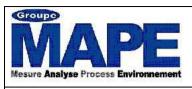
Ainsi, même en renforçant les exigences en terme de rendement épuratoire sur la DBO et en poussant le taux de collecte à 90%, la pollution totale rejeté ne permettrait pas de descendre sous le Fma. Il n'est donc pas possible de rejeter dans l'Isch toute la pollution générée par le sous bassin.

Une orientation envisageable serait de rejeter tout ou partie de la pollution en aval du sous bassin.

Réf : 2003/243-11/2003 Version 1 du 20 novembre 2003 Page 20/44

Bassin versant de l'Isch et du Bruchbach Actualisation du schéma directeur d'assainissement

3.3. Cas 2 : approche locale à l'échelle de sous bassin versant


3.3.1. Présentation des résultats

La première série de tableaux présente la détermination des Q_{th} futur STEP.

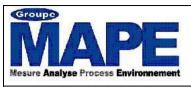
Le second tableau détaille le calcul des Fma selon la méthodologie présentée précédemment en 3.1.2.

La troisième série de tableau détaille la pollution générée par commune puis un tableau de synthèse résume les données par sous bassin selon la méthodologie présentée précédemment en 3.1.3.

Enfin, le tableau de synthèse final résume l'ensemble des données calculées et permet de comparer les Fma à l'ensemble de la pollution générée traitée puis auto épurée selon la méthodologie présentée précédemment en 3.1.4.

Réf : 2003/243-11/2003 Version 1 du 20 novembre 2003 Page 21/44

Bassin versant de l'Isch et du Bruchbach Actualisation du schéma directeur d'assainissement


	Unités				S	Sous-bassin n°1				
Communes	/	Lohr	Ottwiller	Drulingen	Gungwiller	Weyer	Siewiller	Veckersviller	Schalbach	Bickenholtz
Population en 2003	nbre	522	220	1468	233	496	391	295	292	63
Accroissement sur 15 ans*	%	15%	15%	15%	15%	15%	15%	15%	15%	15%
Population en 2018	nbre	600	253	1688	268	570	450	339	336	72
Consommation par habitant	l/jour	130	130	130	130	130	130	130	130	130
Consommation communale	m3/jour	78	33	219	35	74	58	44	44	9
Consommation tronçon	m3/jour					595				
Taux de raccordement	%					80%				
Population raccordée	nbre					3662				
Dilution par les ECP	%					100%				
Qth futur STEP avec taux de				_	_	_	<u> </u>		_	
raccordement de 80% et dilution par 2**	m3/jour					952				

	Unités	S	Sous-Bassin n°	2	S-b n°3	Sous-Ba	assin n°4
Communes	/	Eschwiller	Eywiller	Hirschland	Baerendorf	Postroff	Wolfskirchen
Population en 2003	nbre	183	239	350	320	181	335
Accroissement sur 15 ans*	%	15%	15%	15%	25%	25%	15%
Population en 2018	nbre	210	275	403	400	226	385
Consommation par habitant	l/jour	130	130	130	130	130	130
Consommation communale	m3/jour	27	36	52	52	29	50
Consommation tronçon	m3/jour		115		52	7	' 9
Taux de raccordement	%		80%		80%	80	0%
Population raccordée	nbre		710		320	4	89
Dilution par les ECP	%		100%		100%	10	0%
Qth futur STEP avec taux de							
raccordement de 80% et dilution	m3/jour		185		83	1	27
par 2**	<u>-</u> "						

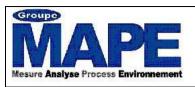
^{*} L'accroissement de population sur 15 ans a été défini de la façon suivante : nous avons tenu compte pour la période 2003-2008 des projets d'urbanisme prévus par les maires. Pour la période 2008-2018, nous avons estimé l'accroissement de la population à 1% par an.

 $\underline{\text{Tableau d'obtention des }Q_{th}\text{ futur STEP à l'horizon 2018}}$

^{**}La dilution par 2 correspond à la dilution par les Eaux Claires Parasites (ECP)

Réf : 2003/243-11/2003 Version 1 du 20 novembre 2003 Page 22/44

Bassin versant de l'Isch et du Bruchbach Actualisation du schéma directeur d'assainissement

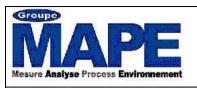

	Unités			S	ous-Bassin n°	°5		
Communes	/	Vieux-Lixheim	Lixheim	Brouviller	SJK	Bourscheid	Hérange	Fleisheim
Population en 2003	nbre	204	572	389	205	227	117	124
Accroissement sur 15 ans*	%	30%	12%	15%	20%	15%	10%	15%
Population en 2018	nbre	265	641	447	246	261	129	143
Consommation par habitant	l/jour	130	130	130	130	130	130	130
Consommation communale	m3/jour	34	83	58	32	34	17	19
Consommation tronçon	m3/jour				277			
Taux de raccordement	%				80%			
Population raccordée	nbre				1705			
Dilution par les ECP	%				100%			
Qth futur STEP avec taux de								
raccordement de 80% et dilution	m3/jour				443			
par 2**	•							

	Unités			Sous-Ba	assin n°6	
Communes	/	Kirrberg	Hilbesheim	Goerlingen	Hellering les Fénétrange	Rauwiller
Population en 2003	nbre	186	515	230	159	200
Accroissement sur 15 ans*	%	20%	17%	15%	19%	15%
Population en 2018	nbre	223	603	265	189	230
Consommation par habitant	l/jour	130	130	130	130	130
Consommation communale	m3/jour	29	78	34	25	30
Consommation tronçon	m3/jour			19	96	
Taux de raccordement	%			80)%	
Population raccordée	nbre			12	208	
Dilution par les ECP	%			10	0%	
Qth futur STEP avec taux de raccordement de 80% et dilution	m3/jour			3′	14	
par 2**	iii3/j0ui				• •	

^{*} L'accroissement de population sur 15 ans a été défini de la façon suivante : nous avons tenu compte pour la période 2003-2008 des projets d'urbanisme prévus par les maires. Pour la période 2008-2018, nous avons estimé l'accroissement de la population à 1% par an.

Tableau d'obtention des Q_{th} futur STEP à l'horizon 2018 (fin)

^{**}La dilution par 2 correspond à la dilution par les Eaux Claires Parasites (ECP)

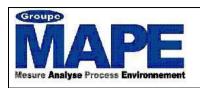


Réf : 2003/243-11/2003 Version 1 du 20 novembre 2003 Page 23/44

Bassin versant de l'Isch et du Bruchbach Actualisation du schéma directeur d'assainissement

	QMNA1/5 aval	Q futur Step	Concentratio n seuil	Fpm	QMNA 1/5 amont	Concentratio n seuil	Famont	Fae	Fas	Fma = Fpm - Famont+Fas- Fae	Fma majoré	Fma
	m3/s	m3/s	mg/l	kg/j	m3/s	mg/l	kg/j	kg/j	kg/j	kg/j	kg/j	EH
DBO5			10	38,9		10	0,0	0,0	0,0	38,9	58,3	972
sous-bassin 1 DCO	0,0340	0,0110	40	155,6	0,000	40	0,0	0,0	0,0	155,6	233,4	2334
NH4 (N)			1,56	6,1		1,56	0,0	0,0	0,0	6,1	9,1	1008
DBO5			10	51,1		10	29,4	0,0	0,0	21,7	32,6	543
sous-bassin 2DCO	0,0570	0,0021	40	204,4	0,034	40	117,5	0,0	0,0	86,9	130,3	1303
NH4 (N)			1,56	7,9		1,56	4,6	0,0	0,0	3,4	5,1	563
DBO5			10	76,9		10	49,2	0,0	0,0	27,6	41,4	690
sous-bassin 3DCO	0,0880	0,0010	40	307,5	0,057	40	197,0	0,0	0,0	110,5	165,7	1657
NH4 (N)			1,56	12,0		1,56	7,7	0,0	0,0	4,3	6,4	716
DBO5			10	169,8		10	121,0	76,9	0,0	-28,1	-14,0	-234
sous-bassin 4 DCO	0,1950	0,0015	40	679,0	0,140	40	483,8	307,5	0,0	-112,3	-56,1	-561
NH4 (N)			1,56	26,4		1,56	18,8	12,0	0,0	-4,4	-2,2	-243
DBO5			10	64,1		10	0,0	0,0	0,0	64,1	96,2	1604
sous-bassin 5DCO	0,0690	0,0052	40	256,6	0,000	40	0,0	0,0	0,0	256,6	384,9	3849
NH4 (N)			1,56	10,0		1,56	0,0	0,0	0,0	10,0	15,0	1663
DBO5			10	124,1		10	59,6	0,0	0,0	64,5	96,7	1612
sous-bassin 6DCO	0,1400	0,0036	40	496,4	0,069	40	238,5	0,0	0,0	257,9	386,9	3869
NH4 (N)			1,56	19,30		1,56	9,3	0,0	0,0	10,0	15,05	1672

Tableau de calcul des Fma

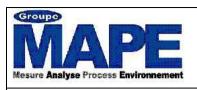

Réf : 2003/243-11/2003 Version 1 du 20 novembre 2003 Page 24/44

Bassin versant de l'Isch et du Bruchbach Actualisation du schéma directeur d'assainissement

	Communes		Lohr			Ottwiller			Drulingen		Gungwiller		
	Paramètre	DBO5	DCO	NH4 (N)	DBO5	DCO	NH4 (N)	DBO5	DCO	NH4 (N)	DBO5	DCO	NH4 (N)
population en 2018	nombre		600			253			1688			268	
taux de raccordement	%		80%			80%			80%			80%	
nombre d'habitants raccordés	nombre		480			202			1351			214	
pollution domestique collectée	kg/j	28,8	48,0	4,3	12,1	20,2	1,8	81,0	135,1	12,2	12,9	21,4	1,9
nombre d'habitants non raccordés	nombre		120			51			338			54	
nombre d'UGB	nombre		310			342			0		0		
autoépuration par 10 km	%	30%	9%	60%	30%	9%	60%	30%	9%	60%	30%	9%	60%
pollution directe domestique non collectée	kg/j	3,6	6,0	0,5	1,5	2,5	0,2	10,1	16,9	1,5	1,6	2,7	0,2
pollution directe d'origine agricole	kg/j	6,0	9,9	0,3	6,6	10,9	0,3	0,0	0,0	0,0	0,0	0,0	0,0
pollution directe d'origine industrielle	kg/j	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
total pollution directe après autoépuration	kg/j	7,0	14,6	0,4	6,2	12,5	0,3	8,6	16,1	1,1	1,2	2,5	0,1

	Communes		Weyer			Siewiller			Veckersville	r	Schalbach			
	Paramètre	DBO5	DCO	NH4 (N)	DBO5	DCO	NH4 (N)	DBO5	DCO	NH4 (N)	DBO5	DCO	NH4 (N)	
population en 2018	nombre		570			450			339			336		
taux de raccordement	%		80%			80%			80%			80%		
nombre d'habitants raccordés	nombre		456			360			271			269		
pollution domestique collectée	kg/j	27,4	45,6	4,1	21,6	36,0	3,2	16,3	27,1	2,4	16,1	26,9	2,4	
nombre d'habitants non raccordés	nombre		114			90			68			67		
nombre d'UGB	nombre		692			791			398			1748		
autoépuration par 10 km	%	30%	9%	60%	30%	9%	60%	30%	9%	60%	30%	9%	60%	
pollution directe domestique non collectée	kg/j	3,4	5,7	0,5	2,7	4,5	0,4	2,0	3,4	0,3	2,0	3,4	0,3	
pollution directe d'origine agricole	kg/j	13,3	22,1	0,6	15,2	25,3	0,7	7,6	12,7	0,4	33,6	55,9	1,6	
pollution directe d'origine industrielle	kg/j	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	
total pollution directe après autoépuration	kg/j	15,7	27,3	1,0	15,6	28,7	0,8	8,5	15,5	0,5	31,3	57,2	1,4	

Tableau de détail de la pollution générée par commune à l'horizon 2018

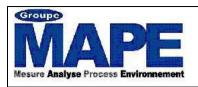

Réf : 2003/243-11/2003 Version 1 du 20 novembre 2003 Page 25/44

Bassin versant de l'Isch et du Bruchbach Actualisation du schéma directeur d'assainissement

	Communes		Bickenholtz			Eschwiller			Eywiller		Hirschland		
	Paramètre	DBO5	DCO	NH4 (N)	DBO5	DCO	NH4 (N)	DBO5	DCO	NH4 (N)	DBO5	DCO	NH4 (N)
population en 2018	nombre		72			210			275			403	
taux de raccordement	%		80%			80%			80%			80%	
nombre d'habitants raccordés	nombre		58			168			220		322		
pollution domestique collectée	kg/j	3,5	5,8	0,5	10,1	16,8	1,5	13,2	22,0	2,0	19,3	32,2	2,9
nombre d'habitants non raccordés	nombre		14			42			55			80	
nombre d'UGB	nombre		368			382		0			1374		
autoépuration par 10 km	%	30%	9%	60%	30%	7%	60%	30%	7%	60%	30%	7%	60%
pollution directe domestique non collectée	kg/j	0,4	0,7	0,1	1,3	2,1	0,2	1,6	2,7	0,2	2,4	4,0	0,4
pollution directe d'origine agricole	kg/j	7,1	11,8	0,3	7,3	12,2	0,3	0,0	0,0	0,0	26,4	44,0	1,2
pollution directe d'origine industrielle	kg/j	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
total pollution directe après autoépuration	kg/j	5,8	11,7	0,2	7,4	13,9	0,4	1,4	2,6	0,2	28,8	48,0	1,6

	Communes		Baerendorf			Postroff		Wolfskirchen			Vieux Lixheim		
	Paramètre	DBO5	DCO	NH4 (N)	DBO5	DCO	NH4 (N)	DBO5	DCO	NH4 (N)	DBO5	DCO	NH4 (N)
population en 2018	nombre		400			226			385			265	
taux de raccordement	%		80%			80%			80%			80%	
nombre d'habitants raccordés	nombre		320			181			308			212	
pollution domestique collectée	kg/j	19,2	32,0	2,9	10,9	18,1	1,6	18,5	30,8	2,8	12,7	21,2	1,9
nombre d'habitants non raccordés	nombre		80			45			77			53	
nombre d'UGB	nombre		1501			1252			432			452	
autoépuration par 10 km	%	30%	9%	60%	30%	12%	60%	30%	12%	60%	30%	13%	60%
pollution directe domestique non collectée	kg/j	2,4	4,0	0,4	1,4	2,3	0,2	2,3	3,9	0,3	1,6	2,7	0,2
pollution directe d'origine agricole	kg/j	28,8	48,0	1,4	24,0	40,1	1,1	8,3	13,8	0,4	8,7	14,5	0,4
pollution directe d'origine industrielle	kg/j	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
total pollution directe après autoépuration	kg/j	31,2	52,0	1,7	22,4	40,3	1,0	10,6	17,7	0,7	10,1	17,0	0,6

Tableau de détail de la pollution générée par commune à l'horizon 2018 (suite)

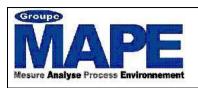

Réf : 2003/243-11/2003 Version 1 du 20 novembre 2003 Page 26/44

Bassin versant de l'Isch et du Bruchbach Actualisation du schéma directeur d'assainissement

	Communes		Lixheim			Brouviller			Saint-Jean Kourtzerode			Bourscheid		
	Paramètre	DBO5	DCO	NH4 (N)	DBO5	DCO	NH4 (N)	DBO5	DCO	NH4 (N)	DBO5	DCO	NH4 (N)	
population en 2018	nombre		641			495			246			261		
taux de raccordement	%		80%			80%			80%			80%		
nombre d'habitants raccordés	nombre		513			396			197			209		
pollution domestique collectée	kg/j	30,8	51,3	4,6	23,7	39,6	3,6	11,8	19,7	1,8	12,5	20,9	1,9	
nombre d'habitants non raccordés	nombre		128			99			49			52		
nombre d'UGB	nombre		606			871			0			0		
autoépuration par 10 km	%	30%	13%	60%	30%	13%	60%	30%	13%	60%	30%	13%	60%	
pollution directe domestique non collectée	kg/j	3,8	6,4	0,6	3,0	4,9	0,4	1,5	2,5	0,2	1,6	2,6	0,2	
pollution directe d'origine agricole	kg/j	11,6	19,4	0,5	16,7	27,9	0,8	0,0	0,0	0,0	0,0	0,0	0,0	
pollution directe d'origine industrielle	kg/j	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	
total pollution directe après autoépuration	kg/j	15,0	25,4	1,0	18,1	31,7	1,0	1,2	2,2	0,1	1,3	2,4	0,2	

	Communes		Hérange			Fleisheim		Kirrberg			Hilbesheim		
	Paramètre	DBO5	DCO	NH4 (N)	DBO5	DCO	NH4 (N)	DBO5	DCO	NH4 (N)	DBO5	DCO	NH4 (N)
population en 2018	nombre		129			143	_		223			603	
taux de raccordement	%		80%			80%			80%			80%	
nombre d'habitants raccordés	nombre		103			114			179			482	
pollution domestique collectée	kg/j	6,2	10,3	0,9	6,8	11,4	1,0	10,7	17,9	1,6	28,9	48,2	4,3
nombre d'habitants non raccordés	nombre		26			29			45			121	
nombre d'UGB	nombre		747			611			0			515	
autoépuration par 10 km	%	30%	13%	60%	30%	13%	60%	30%	6%	60%	30%	6%	60%
pollution directe domestique non collectée	kg/j	0,8	1,3	0,1	0,9	1,4	0,1	1,3	2,2	0,2	3,6	6,0	0,5
pollution directe d'origine agricole	kg/j	14,3	23,9	0,7	11,7	19,6	0,5	0,0	0,0	0,0	9,9	16,5	0,5
pollution directe d'origine industrielle	kg/j	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
total pollution directe après autoépuration	kg/j	13,3	23,9	0,6	10,6	19,6	0,5	1,1	2,2	0,1	8,8	20,9	0,3

Tableau de détail de la pollution générée par commune à l'horizon 2018 (suite)

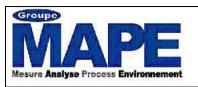


Réf : 2003/243-11/2003 Version 1 du 20 novembre 2003 Page 27/44

Bassin versant de l'Isch et du Bruchbach Actualisation du schéma directeur d'assainissement

	Communes		Goerlingen		Helleri	ing-les-Féné	trange		Rauwiller	
	Paramètre	DBO5	DCO	NH4 (N)	DBO5	DCO	NH4 (N)	DBO5	DCO	NH4 (N)
population en 2018	nombre		265			189			230	
taux de raccordement	%		80%			80%			80%	
nombre d'habitants raccordés	nombre		212			151			184	
pollution domestique collectée	kg/j	12,7	21,2	1,9	9,1	15,1	1,4	11,0	18,4	1,7
nombre d'habitants non raccordés	nombre		53			38			46	
nombre d'UGB	nombre		311			388			279	
autoépuration par 10 km	%	30%	6%	60%	30%	6%	60%	30%	6%	60%
pollution directe domestique non collectée	kg/j	1,6	2,6	0,2	1,1	1,9	0,2	1,4	2,3	0,2
pollution directe d'origine agricole	kg/j	6,0	10,0	0,3	7,4	12,4	0,3	5,4	8,9	0,3
pollution directe d'origine industrielle	kg/j	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
total pollution directe après autoépuration	kg/j	5,5	11,9	0,2	6,7	13,7	0,3	4,4	10,5	0,1

Tableau de détail de la pollution générée par commune à l'horizon 2018 (fin)


Réf : 2003/243-11/2003 Version 1 du 20 novembre 2003 Page 28/44

Bassin versant de l'Isch et du Bruchbach Actualisation du schéma directeur d'assainissement

		Sc	Sous-bassin n°1		Sous-bassin n°2			Sous-bassin n°3		
	Paramètre	DBO5	DCO	NH4 (N)	DBO5	DCO	NH4 (N)	DBO5	DCO	NH4 (N)
population en 2018	nombre		4577			888			400	
taux de raccordement	%		80%			80%			80%	
nombre d'habitants raccordés	nombre		3662			710			320	
pollution domestique collectée	kg/j	219,7	366,2	33,0	42,6	71,0	6,4	19,2	32,0	2,9
nombre d'habitants non raccordés	nombre		915			178			80	
nombre d'UGB	nombre		4649			1756			1501	
autoépuration par 10 km	%	30%	9%	60%	30%	7%	60%	30%	9%	60%
pollution directe domestique non collectée	kg/j	27,5	45,8	4,1	5,3	8,9	0,8	2,4	4,0	0,4
pollution directe d'origine agricole	kg/j	89,3	148,8	4,2	33,7	56,2	1,6	28,8	48,0	1,4
pollution directe d'origine industrielle	kg/j	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
total pollution directe après autoépuration	kg/j	100,0	186,2	5,8	37,6	64,5	2,2	31,2	52,0	1,7

		Sc	Sous-bassin n°4		Sous-bassin n°5			Sous-bassin n°6			
	Paramètre	DBO5	DCO	NH4 (N)	DBO5	DCO	NH4 (N)	DBO5	DCO	NH4 (N)	
population en 2018	nombre		612			2179			1509		
taux de raccordement	%		80%			80%			80%		
nombre d'habitants raccordés	nombre		489			1743			1208		
pollution domestique collectée	kg/j	29,4	48,9	4,4	104,6	174,3	15,7	72,5	120,8	10,9	
nombre d'habitants non raccordés	nombre		122			436			302		
nombre d'UGB	nombre		1684			3287			1493		
autoépuration par 10 km	%	30%	12%	60%	30%	13%	60%	30%	6%	60%	
pollution directe domestique non collectée	kg/j	3,7	6,1	0,6	13,1	21,8	2,0	9,1	15,1	1,4	
pollution directe d'origine agricole	kg/j	32,3	53,9	1,5	63,1	105,2	3,0	28,7	47,8	1,3	
pollution directe d'origine industrielle	kg/j	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	
total pollution directe après autoépuration	kg/j	33,0	58,0	1,8	69,6	122,2	4,1	26,5	59,1	1,1	

Synthèse de la pollution générée par sous bassin à l'horizon 2018

Réf : 2003/243-11/2003 Version 1 du 20 novembre 2003 Page 29/44

Bassin versant de l'Isch et du Bruchbach Actualisation du schéma directeur d'assainissement

	Unites	S	ous-bassin n°	'1	5	sous-bassin n°	2	5	sous-bassin n°	3
Paramètres		DBO5	DCO	NH4 (N)	DBO5	DCO	NH4 (N)	DBO5	DCO	NH4 (N)
Fma	kg/jour	58,3	233,4	9,1	32,6	130,3	5,1	41,4	165,7	6,4
total pollution directe après autoépuration	kg/jour	100,0	186,2	5,8	37,6	64,5	2,2	31,2	52,0	1,7
pollution domestique collectée	kg/jour	219,7	366,2	33,0	42,6	71,0	6,4	19,2	32,0	2,9
rendement minimum réglementaire	%	70%	75%	0%	60%	0%	0%	60%	0%	0%
rejet STEP	kg/j	65,9	91,5	33,0	17,0	71,0	6,4	7,7	32,0	2,9
lejet 31 EF	mg/l	69,2	96,2	34,6	92,3	384,6	34,6	92,3	384,6	34,6
total pollution après autoépuration	kg/jour	165,9	277,7	38,8	54,7	135,5	8,5	38,9	84,0	4,6
Fma - total pollution après autoépuration	kg/jour	-107,6	-44,4	-29,7	-22,1	-5,2	-3,5	2,5	81,7	1,9

	Unites	S	sous-bassin n°4		9	sous-bassin n°	5	sous-bassin n°6		
Paramètres		DBO5	DCO	NH4 (N)	DBO5	DCO	NH4 (N)	DBO5	DCO	NH4 (N)
Fma	kg/jour	-14,0	-56,1	-2,2	96,2	384,9	15,0	96,7	386,9	15,0
total pollution directe après autoépuration	kg/jour	33,0	58,0	1,8	69,6	122,2	4,1	26,5	59,1	1,1
pollution domestique collectée	kg/jour	29,4	48,9	4,4	104,6	174,3	15,7	72,5	120,8	10,9
rendement minimum réglementaire	%	60%	0%	0%	60%	0%	0%	60%	0%	0%
rejet STEP	kg/j	11,7	48,9	4,4	41,8	174,3	15,7	29,0	120,8	10,9
rejet 3 i Li	mg/l	92,3	384,6	34,6	92,3	384,6	34,6	92,3	384,6	34,6
total pollution après autoépuration	kg/jour	44,8	106,9	6,2	111,4	296,5	19,7	55,5	179,9	12,0
Fma - total pollution après autoépuration	kg/jour	-58,8	-163,1	-8,3	-15,2	88,4	-4,8	41,2	207,0	3,1

Tableau de synthèse final de comparaison des Fma et de la pollution générée

Réf : 2003/243-11/2003 Version 1 du 20 novembre 2003

Page 30/44

Bassin versant de l'Isch et du Bruchbach Actualisation du schéma directeur d'assainissement

3.3.2. Commentaires

La carte qui suit permet de visualiser la répartition spatiale des Fma.

A l'échelle de chaque sous bassin, la population en 2018 reste inférieure à 2000 habitants raccordés selon nos estimations sauf pour le sous bassin 1 qui comporte 3662 habitants raccordés.

Les exigences en terme d'épuration appliquées dans ce cas sont celles du PAR qui impose le respect des rendements et des concentrations de rejet suivants pour les ouvrages compris entre 2000 et 5000 E.H. et celles de l'arrêté du 21 juin 1996 qui impose qui impose le respect des rendements ou des concentrations de rejets pour les ouvrages inférieur à 2000 EH.

Paramètres	Concentrat	ion en mg/l	Rendement en %			
	< 2000 EH	2000 <eh<5000< td=""><td>< 2000 EH</td><td>2000<eh<5000< td=""></eh<5000<></td></eh<5000<>	< 2000 EH	2000 <eh<5000< td=""></eh<5000<>		
DCO	1	125	1	75		
DBO	35	25	30* - 60	70		
NH4	1	1	1	1		

^{*}L'arrêté du 21 juin 1996 précise que les effluents sont au minimum traités par voie physico-chimique, ou, si nécessaire, traités par voie biologique.

Les performances minimales des ouvrages de traitement physico chimique sont de 30% sur la DBO5.

Les performances minimales des ouvrages de traitement biologique sont :

- Soit un rendement minimal de 60% sur la DBO5
- Soit une concentration maximale de l'effluent traité de 35 mg/l de DBO5.

Dans le cas présent, un traitement physico-chimique n'est suffisant pour aucun des sous bassin concerné. (excepté le sous bassin n°6). Un traitement biologique avec un rendement minimum épuratoire appliqué sur la DBO5 de 60% a donc été appliqué.

Un traitement physico-chimique avec un niveau de traitement de 30% sur la DBO5 est suffisant sur le sous bassin n°6.

Concernant le sous bassin n°1, l'apport de DBO5 par la pollution directe est nettement supérieur à ce qui est admissible par le milieu récepteur (100 kg/jour pour 58.3 kg/j admissible). A elle seule la pollution agricole apporte 76 kg/jour de DBO5, ce qui est déjà supérieure au Fma.

De même elle apporte 60% de la pollution en DCO admissible.

Le rejet STEP en NH4 est quand à lui à peu près 3.5 fois supérieur au Fma (33 kg/j en sortie de STEP pour 9.1 kg/j admissible).

Concernant le sous bassin n°2, comme précédemment, l'apport de DBO5 par la pollution directe est supérieur à ce qui est admissible par le milieu récepteur (37.6 kg/jour pour 32.6 kg/j admissible). De même, la pollution agricole représente 86% de la pollution directe, soit autant que le Fma sur la DBO5.

Concernant la DCO et NH4, la pollution générée est également supérieure à ce qui est admissible. En appliquant des exigences renforcées (75% sur la DCO et sur NH4) sur ces deux paramètres, les flux rejetés pourraient être compatible avec les Fma.

Concernant le sous bassin n°3, les flux rejetés sont compatibles avec les Fma. Il n'y a donc pas de problèmes particuliers sur ce tronçon.

Concernant le sous bassin n°4, ce sous bassin a des Fma négatifs, cela signifie qu'il ne peut rejeter aucun flux polluants à l'intérieur même de son sous bassin. Cette situation est due au fait que ce sous bassin est

Réf : 2003/243-11/2003 Version 1 du 20 novembre 2003 Page 31/44

Bassin versant de l'Isch et du Bruchbach Actualisation du schéma directeur d'assainissement

situé à l'aval de la confluence de l'Isch et du Bruchbach. Il reçoit donc les flux de pollution provenant de ces deux cours d'eau qui ne peuvent pas être assimilé par le milieu récepteur.

Concernant le sous bassin n°5, les flux de pollutions rejetés sont compatibles avec les Fma pour la DCO et légèrement supérieur aux Fma pour les paramètres DBO5 et NH4. Le renforcement des exigences épuratoires permettrait de rendre compatible le rejet avec les Fma.

Concernant le sous bassin n°6, les flux de pollution rejeté sont nettement inférieur aux Fma. Il n'y a donc pas de problèmes particuliers sur ce tronçon.

Les sous bassin n°1, 2 et 4 ne pourront vraisemblablement pas rejeter même en renforçant les exigences (augmentation du rendement ou du taux de collecte). Comme il a été écrit dans l'approche globale, il sera certainement nécessaire de trouver un autre exutoire. Le sous-bassin n°1 situé à l'amont du bassin versant de l'Isch concentre à lui seul 45% de la population du bassin versant et un tiers de la pollution agricole. Cette concentration, alliée à des faibles débits fait que le milieu récepteur ne peut pas assimiler les pollutions générées.

Les sous bassin n°5 et 6, correspondant au bassin versant du Bruchbach, s'avèrent plus propice au rejet des flux polluants. Les débits sont plus importants et la pollution moins importante.

En définitive, il apparaît donc que les communes situées le long du Bruchbach pourront certainement rejeter leur flux polluants après traitement en renforçant dans certains cas les exigences réglementaires. Concernant les communes situées le long de l'Isch, celles situées en tête de bassin ne pourront vraisemblablement pas rejeter leurs flux polluants en tête de bassin, d'autant plus que la pollution agricole, sur laquelle aucun abattement n'est possible, dépasse à elle seule les capacités d'admissibilités du milieu. Enfin, pour les communes situées à l'aval de la confluence de l'Isch et du Bruchbach, un rejet vers la Sarre pourraient être une solution à envisager.

.

Réf : 2003/243-11/2003 Version 1 du 20 novembre 2003 Page 32/44

Bassin versant de l'Isch et du Bruchbach Actualisation du schéma directeur d'assainissement

4. CONCLUSION

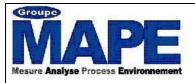
pourraient être une solution à envisager.

Les conditions climatiques exceptionnellement sèches observées durant l'été ont eu pour conséquence un étiage 2003 particulièrement faible, inférieur au QMNA1/5.

L'objectif de qualité fixé par les arrêtés préfectoraux du 10 juin 1985 pour la Moselle et du 13 octobre 1985 pour le Bas-Rhin pour le secteur d'étude est de 2.

La qualité physico-chimique observée varie de 1A à 2. Le facteur déclassant est généralement le taux de saturation en O2 qui varie entre 64 et 83% lorsqu'il est le facteur déclassant. En effet, le faible débit des ruisseaux allié à un fort phénomène d'eutrophisation ont nettement joué sur la saturation en oxygène, ce qui peut expliquer en partie le niveau de qualité observé.

La pollution azotée est également présente puisque celle-ci varie de la qualité N1 (pollution modérée) à N3 (pollution importante). Le principal facteur déclassant est NO3 (sur 10 des 11 onze points de mesures) qui varie de 9 à 27 mg/l lorsqu'il est le facteur déclassant.


On note également une importante pollution au phosphore généralisée sur l'ensemble du secteur d'étude puisque la classe de qualité est P4 (pollution excessive) pour 10 des 11 points de mesures. L'utilisation des lessives, produits détergents et les activités agricoles sont généralement à l'origine d'une pollution en phosphore.

Les nitrates et les phosphates sont des substances nutritives pour les végétaux. En quantités trop importantes, elles peuvent être à l'origine de leur développement anarchique (eutrophisation du milieu aquatique), qui entraı̂ne une consommation accrue de l'oxygène dissous, et l'asphyxie des organismes aquatiques.

Concernant les flux polluants maximums admissibles (Fma) sur les paramètres DBO5, DCO et NH4, le milieu récepteur ne peut pas dans son ensemble recevoir la pollution générée par les communes.

Il apparaît que les communes situées le long du Bruchbach pourront certainement rejeter leur flux polluants après traitement en renforçant dans certains cas les exigences réglementaires.

Concernant les communes situées le long de l'Isch, celles situées en tête de bassin ne pourront vraisemblablement pas rejeter leurs flux polluants en tête de bassin, d'autant plus que la pollution agricole, sur laquelle aucun abattement n'est possible, dépasse à elle seule les capacités d'admissibilités du milieu. Enfin, pour les communes situées à l'aval de la confluence de l'Isch et du Bruchbach, un rejet vers la Sarre

Réf : 2003/243-11/2003 Version 1 du 20 novembre 2003 Page 33/44

Bassin versant de l'Isch et du Bruchbach Actualisation du schéma directeur d'assainissement

ACTUALISATION DU SCHEMA DIRECTEUR D'ASSAINISSEMENT DES COMMUNES DU BASSIN VERSANT DE L'ISCH ET DU BRUCHBACH

Rapport phase 2 Evaluation de la qualité du milieu récepteur

Annexe 1 : description des points de mesures sur le milieu récepteur

Réf : 2003/243-11/2003 Version 1 du 20 novembre 2003 Page 34/44

Point n°	1
Cours d'eau	l'Isch
Localisation	Weyer
Situation hydrologique apparente	Basses eaux
Largeur	2 m
Profondeur moyenne	0.16 m
Profondeur maximale	0.21 m
Nature des fonds	Mélange de galets, graviers, blocs, feuilles, branches
Ecoulement	Cassé : plat-lent entrecoupé de rares seuils ne générant que des faciès rapides que très localisés
Perturbation du débit	Modifications localisées ou de faible amplitude respectant le cycle hydraulique
Végétation	Ripisylve 2 strates (arbres et buissons)
Végétation aquatique	Peu de végétation
Rive gauche	Parc à bêtes
Rive droite	Terrain de sport

Réf : 2003/243-11/2003 Version 1 du 20 novembre 2003 Page 35/44

Point n°	2
Cours d'eau	L'Isch
Localisation	« Moulin de l'Isch »
Situation hydrologique apparente	Basses eaux
Largeur	3 m
Profondeur moyenne	0.29 m
Profondeur maximale	0.39 m
Nature des fonds	Mélange de galets, graviers, blocs
Ecoulement	Ondulé
Perturbation du débit	Normal, pas de perturbation apparente
Végétation	Ripisylve 2 strates (arbres et buissons)
Végétation aquatique	Peu ou pas de végétation
Rive gauche	Parc à bêtes
Rive droite	Parc à bêtes

Réf : 2003/243-11/2003 Version 1 du 20 novembre 2003 Page 36/44

Point n°	3
Cours d'eau	L'Isch
Localisation	Aval de la STEP de Weyer
Situation hydrologique apparente	Basses eaux
Largeur	2.40
Profondeur moyenne	0.50
Profondeur maximale	0.73
Nature des fonds	Mélange de graviers, blocs, feuilles, vases
Ecoulement	Constant
Perturbation du débit	Normal, pas de perturbation apparente
Végétation	Herbacée (prairies)
Végétation aquatique	Peu de végétation
Rive gauche	Prairies
Rive droite	STEP de Weyer

Réf : 2003/243-11/2003 Version 1 du 20 novembre 2003 Page 37/44

Point n°	4
Cours d'eau	L'Isch
Localisation	Aval de Hirschland
Situation hydrologique apparente	Basses eaux
Largeur	6 m
Profondeur moyenne	0.25 m
Profondeur maximale	0.30 m
Nature des fonds	Mélange de graviers, blocs, vases
Ecoulement	Cassé : plat-lent entrecoupé de rares seuils ne générant des faciès rapides que très localisés
Perturbation du débit	Modification localisée respectant le cycle hydrologique
Végétation	Ripisylve 2 strates (arbres et buissons) + herbacée
Végétation aquatique	Pas de végétation
Rive gauche	Habitation
Rive droite	Habitation

Réf : 2003/243-11/2003 Version 1 du 20 novembre 2003 Page 38/44

Point n°	5
Cours d'eau	L'Isch
Localisation	Aval de Baerendorf
Situation hydrologique apparente	Basses eaux
Largeur	6 m
Profondeur moyenne	0.23 m
Profondeur maximale	0.29 m
Nature des fonds	Mélange de graviers, feuilles
Ecoulement	Cassé : plat-lent entrecoupé de rares seuils ne générant des faciès rapides que très localisés
Perturbation du débit	Normal, pas de perturbation apparente
Végétation	Ripisylve 1 strate (arbustive arborescente)
Végétation aquatique	Hélophytes et bryophites
Rive gauche	Habitation
Rive droite	Prairies

Réf : 2003/243-11/2003 Version 1 du 20 novembre 2003 Page 39/44

Point n°	6
Cours d'eau	L'Isch
Localisation	Aval de Postroff
Situation hydrologique apparente	Basses eaux
Largeur	4.20 m
Profondeur moyenne	0.30 m
Profondeur maximale	0.46
Nature des fonds	Mélange de graviers, blocs, branches
Ecoulement	Constant
Perturbation du débit	Normal, pas de perturbation apparente
Végétation	Ripisylve 2 strates (arbres et buissons) et ripisylve 1 strate (arbustive arborescente)
Végétation aquatique	Racines immergés, hélophytes
Rive gauche	Prairies
Rive droite	Prairies

Réf : 2003/243-11/2003 Version 1 du 20 novembre 2003 Page 40/44

Point n°	7
Cours d'eau	L'Isch
Localisation	Amont de la confluence avec la Sarre
Situation hydrologique apparente	Basses eaux
Largeur	4.70 m
Profondeur moyenne	0.05 m
Profondeur maximale	0.1 m
Nature des fonds	Dalles ou béton
Ecoulement	Cassé : plat-lent entrecoupé de rares seuils ne générant des faciès rapides que très localisés
Perturbation du débit	Normal, pas de perturbation apparente
Végétation	Ripisylve 1 strate (arbustive arborescente) et herbacée
Végétation aquatique	Peu de végétation
Rive gauche	Prairies
Rive droite	Prairies, forêts

Réf : 2003/243-11/2003 Version 1 du 20 novembre 2003 Page 41/44

Point n°	8
Cours d'eau	Le Bruchbach
Localisation	Aval de Hérange
Situation hydrologique apparente	Basses eaux
Largeur	2.80 m
Profondeur moyenne	0.14 m
Profondeur maximale	0.14 m
Nature des fonds	Dalles bétons
Ecoulement	Constant
Perturbation du débit	Normal, pas de perturbation apparente
Végétation	Herbacée
Végétation aquatique	Peu de végétation
Rive gauche	D 90
Rive droite	Parc à bêtes

Réf : 2003/243-11/2003 Version 1 du 20 novembre 2003 Page 42/44

Point n°	9
Cours d'eau	Le Bruchbach
Localisation	Aval de Vieux-Lixheim
Situation hydrologique apparente	Basses eaux
Largeur	2.80 m
Profondeur moyenne	0.30 m
Profondeur maximale	0.45 m
Nature des fonds	Vases, feuilles
Ecoulement	Constant
Perturbation du débit	Normal, pas de perturbation apparente
Végétation	Ripisylve 1 strate (arbustive arborescente) et herbacée
Végétation aquatique	Racines immergées et hélophytes
Rive gauche	Parc à bêtes parc à bêtes
Rive droite	

Réf : 2003/243-11/2003 Version 1 du 20 novembre 2003 Page 43/44

Point n°	10
Cours d'eau	Le Bruchbach
Localisation	Amont de Goerlingen « Vieux-Moulin »
Situation hydrologique apparente	Basses eaux
Largeur	3.50 m
Profondeur moyenne	0.20 m
Profondeur maximale	0.26 m
Nature des fonds	Mélange de graviers, blocs, vases
Ecoulement	Cassé : plat-lent entrecoupé de rares seuils ne générant des faciès rapides que très localisés
Perturbation du débit	Modifications localisées respectant le cycle hydrologique
Végétation	Ripisylve 1 strate (arbustive arborescente) et herbacée
Végétation aquatique	Racines immergées et hélophytes
Rive gauche	Bosquets
Rive droite	Parc à bêtes

Réf : 2003/243-11/2003 Version 1 du 20 novembre 2003 Page 44/44

Point n°	11
Cours d'eau	Le Bruchbach
Localisation	Kirrberg
Situation hydrologique apparente	Basses eaux
Largeur	5 m
Profondeur moyenne	0.20 m
Profondeur maximale	0.25 m
Nature des fonds	Mélange de graviers, blocs, galets
Ecoulement	Cassé : plat-lent entrecoupé de rares seuils ne générant des faciès rapides que très localisés
Perturbation du débit	Modification localisée respectant le cycle hydraulique
Végétation	Ripisylve 2 strates (arbres et buissons) et ripisylve 1 strate (arbustive arborescente)
Végétation aquatique	Pas de végétation
Rive gauche	Parc à bêtes
Rive droite	Parc à bêtes