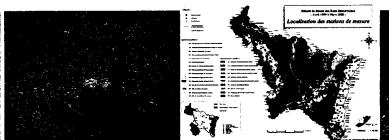


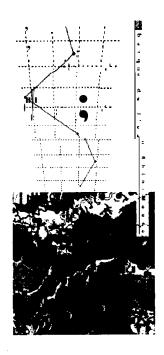
Réseau de Bassin des Eaux soutenaines

Rapport d'analyse technique des données avril 99 - mars 00.



« LE LONGEAU » ROUTE DE LESSY ROZERIBULIES

BP 30019 57161 MOULINS LES METZ CEDEX


Tel 03 87 34 47 00 Fan 03 87 60 49 85

Etablissement public de l'état

Réseau de Bassin des Eaux souterraines

Rapport d'analyse technique des données avril 99 - mars 00

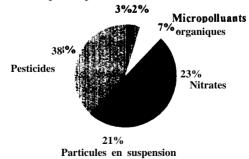
« LE LONGEAU » - ROUTE DE LESSY - ROZERIEULLES BP 30019 - 57161 MOULINS LES METZ CEDEX Tel : 03.87 34.47 00 -Fax : 03.87.60.49.85 Etablissement public de l' état

F. LAPUYADE (AERM) Auteurs: A.L. GOUJON Remerciements particuliers à M BONNEFILLE et CADILHAC (AERMC) pour les traitements SEQ Les données du RBES ont été intégrées à la banque de l'éau et validées par les DIREN Alsace, Lorraine, et Champagne Ardenne, sur la période d'étude.

Synthèse

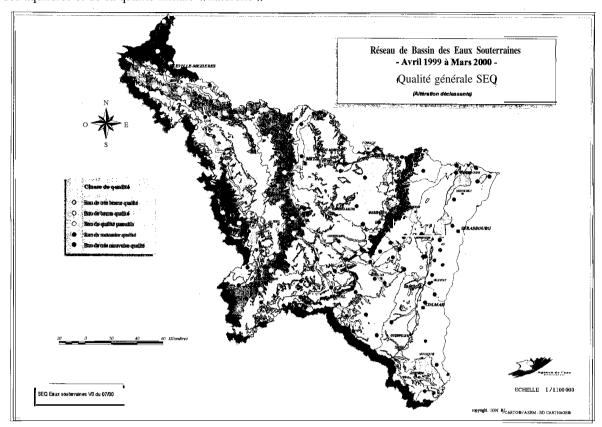
Depuis avril 99, le réseau de Bassin des Eaux Souterraines permet d'évaluer la qualité des eaux souterraines grâce à 185 stations prélevées 6 fois par an pour les aquifères karstiques ou fissurés, 3 à 2 fois par an pour les aquifères à perméabilité d'interstices, et 1 fois par an pour les aquifères captifs. En tenant ainsi compte de l'inertie des eaux souterraines, tout en ayant une continuité de mesures, on peut espérer appréhender de manière scientifiquement correcte leur qualité réelle et leur évolution.

Nous précisons cependant que ce réseau surveille la qualité de l'eau brute, et ne présage en rien de l'eau distribuée publiquement qui peut subir des traitements, dilutions etc..


Le rapport technique "Réseaux de Bassin des Eaux Souterraines : rapport d'analyse technique avril 99- mars 00" constitue la première exploitation de ce réseau. Il bénéficie d'un apport particulièrement riche en données, par l'analyse de nombreux paramètres en avril 99 qui ne devraient être analysés ensuite que tous les 5 ans.

Les résultats:

D'après le Système d'évaluation de la qualité (outilnter Agences), la répartition des stations en classes de qualité est la suivante :



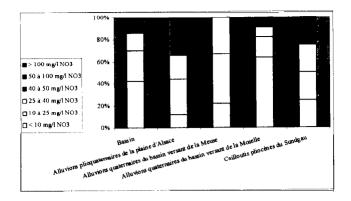
Le constat doit donc être fait que les stations du RBES ne sont qu' à 37 % seulement considérées comme ayant une bonne ou une très bonne qualité. La moitié d'entre elles fournissent une eau de qualité passable. Les principales causes de ce déclassement en qualité passable sont :

On trouve certes des altérations considérées comme naturelles mais on observe principalement que les pesticides sont la première cause de dégradation anthropique de la ressource en eau, avant les nitrates et les micropolluants organiques.

Cette qualité générale reflète en fait deux approches combinées (Voir conclusions page 44) : 1' approche "aptitude à la production d' eau potable", et 1' approche "état patrimonial" qui tient compte de l' inertie temporelle des aquifères et de sa qualité initiale « naturelle »

On retiendra que 3 aquifères sont particulièrement dégradés : les calcaires du Dogger et de l'oxfordien, ainsi que la nappe d'Alsace.

<u>De manière générale. les aouifères calcaires</u> sont fissurés, voire karstifiés et donc vulnérables par des circulations d' eau rapides. Le principal problème est en fait constitué par**les pics d'atrazine et de déséthylatrazine.** Plus de 60 % des stations détectent ainsi une triazine (détails page 28), mais pas à chaque prélèvement, ce qui montre deux choses :


- Le caractère généralisé de la pollution liée à des apports diffus
- La variabilité liée au fonctionnement rapide de l'aquifère, réagissant rapidement aux précipitations (confirmé par les déclassements fréquents par les particules en suspension dans ces aquifères).

Cette présence de pesticides est à relier à la présence de nitrates : 55% des stations dépassent la valeur guide de 25 mg/l., et on retrouve également dans ce type d'aquifère des urées substituées (15% des stations dépassent la norme en isoproturon).

Par contre les polychlorobiphényles (PCB), organochlorés, hydrocarbures aromatiques polycycliques (HAP), organohalogénés volatils (OHV), n' ont été que peu, ou pas du tout retrouvés.

En ce qui concerne <u>les aauifères alluviaux</u>, la nappe d'Alsace (ainsi que le Sundgau) est le principal problème, avec plus de 60 % des mesures positives en atrazine et en déséthylatrazine, mais les stations captant les alluvions de la Meuse sont également fortement contaminées. Si du point de vue santé publique, les concentrations trouvées sont encore largement compatibles avec la production d'eau potable (voir cartes en conclusion), la présence de pesticides à forte **rémanence** comme les triazines dans l'eau dégrade fortement l'état patrimonial de la nappe.

Les nitrates sont également à un niveau préoccupant sur la nappe d'Alsace avec une moyenne à 29.6 mg/l et une médiane à 24.8 mg/l. Ces valeurs fortes sont d'ailleurs communes aux aquifères alluviaux :

De plus, contrairement au reste du bassin, ces **aquifères** sont particulièrement touchés par les **organo**-halogénés volatils (OHV : voir détail page 22) avec des **fréquences** de détection pouvant atteindre 40% sur la nappe d'Alsace en trichloroéthylène.

Enfin, les pollutions connues de la nappe d'Alsace par les chlorures sont retrouvées, et on signalera des valeurs assez élevées en Bore en Alsace et sur les alluvions de la Moselle, ainsi que des HAP ponctuellement détectés sur la nappe d'Alsace.

On retrouve également sur quelques points des **aquifères** alluviaux (voir détails page 20 et suivantes) du linuron, du diuron, des hexachlorobenzènes et du métolachlore.

<u>Les aquifères eréseux</u> bénéficient en Rhin-Meuse de conditions naturelles favorables (couverture ou environnement naturel), ce qui se ressent largement sur la qualité des aquitères. On signalera cependant la présence occasionnelle de déséthylatrazine, tétrachloroéthylène, sur les grès **d'Hettange-Luxembourg** et de chloroforme et tétrachlorure de carbone sur les grès du Trias Inférieur.

Enfin, des micropolluants minéraux généralement d'origine naturelle sont présents dans les grès du Trias sous couverture : Cadmium, Arsenic, Aluminium, Sélénium.

1 B	ASSIN RHIN-MEUSE	5
1.1	PESTICIDES	5
1.1.1	Triazines	5
1.1.2	Urées substituées	7
1.1.3	COMPOSÉSORGANOCHLORÉS	7
1.1.4	COMPOSÉS ORGANOPHOSPHORÉS	8
1.1.5	AUTRES PHYTOSANITAIRES	8
1.2	MICROPOLLUANTSORGANIQLJESHORSPESTICIDES	8
1.2.1	POLYCHLOROBIPHÉNYLES (PCB)	8
1.2.2	HYDROCARBURES AROMATIQUES POLYCYCLIQUES (HAP)	g
1.2.3	ORGANO-HALOGÉNÉS VOLATILS (OHV)	10
1.3	MICROPOLLUANTS MINÉRAUX	11
1.4	NITRATES ET COMPOSÉS AZOTÉS	13
1.5	MINÉRALISATION ET SALINITÉ	14
1.6	PARTICULESENSUSPENSION	16
1.7	MATIÈRESORGANIQUESOXYDABLES	16
2 RÍ	ÉSERVOIRS ALLUVIAUX	19
2.1	PESTICIDES	19
2.1.1	Triazines	19
2.1.2	URÉESSUBSTITUÉES	22
2.1.3	COMPOSÉS ORGANOCHLORÉS	22
2.2	NITRATES ET COMPOSÉS AZOTÉS	22
2.3	MICROPOLLUANTSORGANIQUESHORSPESTICIDES	24
2.3.1	Organo-halogénés volatils (OHV)	24
2.4	PARTICULESENSUSPENSION	26
2.5	MATIÈRESORGANIQUESOXYDABLES	26
2.6	MINÉRALISATION ET SALINITÉ	27
2.7	MICROPOLLUANTS MINÉRAUX	28
2.8	Synthèse	29
२ D I	ÉSERVOIRS CALCAIRES	31
JK	ESERVOIRS CALCARES	
3.1	PESTICIDES	31
3.1.1	TRIAZINES	31
3.1.2	Urées substituées	33
3.1.3	Organochlorés	34
3.2	PARTICULESENSUSPENSION	34
3.3	NITRATES ET COMPOSÉS AZOTÉS	35
3.4	Micropolluantsorganiqueshorspesticides	37
3.4.1	POLYCHLOROBIPHÉNYLES (PCB)	37
3.4.2	HYDROCARBURES AROMATIQUES POLYCYCLIQUES (HAP)	37
3.4.3	Organo-halogénés volatils (OHV)	37
3.5	MATIÈRESORGANIQUESOXYDABLES	38
3.6	MINÉRALISATION ET SALINITÉ	39
3.7	MICROPOLLUANTS MINÉRAUX	36
3.8	Synthèse	40
4 RJ	ÉSERVOIRS GRÉSEUX	41

Agence de l'Eau Rhin-Meuse - Réseau de Bassin des Eaux Souterraines

4.1	PESTICIDES	41
4.2	PARTICULES ENSUSPENSION	41
4.3	NITRATES ET COMPOSÉS AZOTÉS	42
4.4	MICROPOLLUANTSORGANIQUESHORSPESTICIDES	43
4.5	MATIÈRESORGANIQUESOXYDABLES	43
4.6	MINÉRALISATION ET SALINITÉ	44
4.7	MICROPOLLUANTS MINÉRAUX	45
4.8	Synthèse	46
ANN	NEXE 1: LOCALISATION DES POINTS RBES	
ANN	NEXE 2 : LISTE DES POINTS RBES	
ANN	NEXE 3 : PARMÈTRES ANALYSÉS ET INCERTITUDES	
ANN	NEXE 4 : STATISTIOUES DESCRIPTIVES	
ANN	NEXE 5 : CARTES RHIN-MEUSE PAR PARAMÈTRE	
ANN	NEXE 6 : CARTES SEQ RHIN-MEUSE	
4 B.T.	NEVE & STANISTIONES DESCRIPTIVES DAD AQUIEDES	
ANN	NEXE 7 : STATISTIQUES DESCRIPTIVES PAR AQUIFÈRE	
ANN	NEXE 8 : TRAITEMENTS EFFECTUÉS SUR LES DONNÉES BRUTES	

Préambule: Contextes et objectifs

Conformément aux orientations arrêtées tant au niveau national (par lettre de mission du Ministère de l'Aménagement du Territoire et de l'Environnement) qu' au niveau du bassin (par la commission des programmes), l' Agence de l' eauRhin-Meuse, en collaboration étroite avec la DIREN Alsace, Lorraine et Champagne-Ardennes, a défini un réseau de suivi de la qualité des eaux souterraines. Le Réseau de Bassin des Eaux Souterraines (RBES) est un réseau de type "patrimonial de connaissance". Sa vocation est la connaissance générale de la ressource, ainsi que son évolution, avec comme objectifs :

- Dresser à pas de temps régulier une image de la qualité de l'eau et juger de son évolution.
- Juger de l'efficacité des politiques mises en œuvre, et permettre d'orienter leur réajustement.

Le volet qualité du RBES est opérationnel depuis avril 1999. Il porte sur 185 stations de mesure (voir carte annexe 1 et 2) et a débuté par la réalisation d' un état des lieux avec une analyse comportant 101 paramètres sur chacune des stations de mesure. L' annexe 3 reprend les paramètres analyses avec les seuils de **détection/quantification**, ainsi que les coefficients de variation analytiques. Depuis, 59 paramètres ont été suivis de 1 à 6 fois par an, selon la vulnérabilité de l' aquifère. Lors de cette première année de fonctionnement (avril 1999 à mars 2000), ce sont au total 53269 analyses d' eau qui ont été réalisées. Le présent rapport étudie donc l' état des eaux souterraines sur cette période04/99 à 03/00.

Ces données ont été gérées par lot géographique par les 3 DIREN et l'Agence : 61 stations par la DIREN Alsace :58 Stations par la DIREN Lorraine ;10 Stations par la DIREN Champagne-Ardennes ; 56 Stations par l'Agence de l'Eau Rhin-Meuse.

En premier lieu, nous présenterons les résultats de qualité des eaux souterraines à l'échelle du bassin Rhin-Meuse, puis ils seront détaillés à travers une présentation par grands types de réservoirs. Les principales thématiques seront illustrées par une représentation cartographique. Enfin, le nouvel outil SEQ (Système d'Evaluation de la Qualité des eaux souterraines) élabore en Interagences permet d'avoir une vision plus synthétique, matérialisée notamment par des cartes par altérations. L'ensemble des données synthétiques relatives au bassin sera également présenté sous forme de graphes statistiques.

On signalera que les paramètres représentés le sont généralement au travers de la valeur maximale observée. Cette représentation donne certainement une vision pessimiste de I 'état des aquifères, mais constitue néanmoins une référence de I 'état des milieux.

Enfin les concentrations maximales observées ont été signalées dans ce rapport. Elles ne sont ici qu' à titre d'illustration, au vu de la faible densité des points, et ne peuvent prétendre à l'exhaustivité.

Agence de l'Eau Rhin-Meuse - Réseau de Bassin des Eaux Souterraines

1 Bassin Rhin-Meuse

Le bassin Rhin-Meuse s' étend sur 8 départements (voir carte annexe 1) : Ardennes (08), Haute-Marne (52), Meurthe et Moselle (54), Moselle (57), Bas-Rhin (67), Haut-Rhin (68) et Vosges (88).

Les principaux aquiféres sont répartis en 3 grands types de réservoirs :

Les réservoirs alluviaux:

Alluvions quaternaires du bassin versant de la Moselle (Code SANDRE 302) Alluvions quaternaires du bassin versant de la Meuse (Code SANDRE 304) Alluvions **plio-quaternaires** de la plaine d' Alsace (Code SANDRE 091) Cailloutis pliocénes du Sundgau (Code SANDRE 173)

Les réservoirs calcaires en milieu fissuré et/ou karstifié

Calcaires du Tithonien (ex Portlandien) (Code SANDRE 070)

Calcaires oxfordiens du bassin parisien (Code SANDRE 206)

Calcaires du Dogger du bassin parisien (Code SANDRE 207)

Calcaires du Muschelkalk de Lorraine (Code SANDRE 082)

> Les réservoirs gréseux

Grés du Lias inférieur d' Ardennes-Luxembourg (Code SANDRE 208) Grés du Trias inférieur de Lorraine (pour notre étude, nous avons séparé l' aquifére des grès du Trias inférieur sous couverture du reste du système aquifère Code SANDRE 210 en libre, Code SANDRE 210 x en captif)

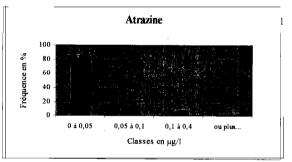
Les paramètres analysés l'ont été sur les 185 stations du réseau de bassin, aumoins une fois lors de l'analyse complète d'avril 99, voire en routine pour les paramétres classiques.

On définit une mesure positive par une valeur qui dépasse le seuil de détection.

1.1 Pesticides

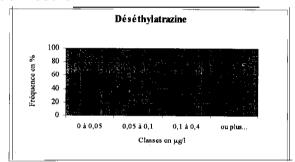
Les différentes variétés de pesticides que nous avons suivis sont : les triazines, les urées substituées, les composés organochlorés et les composés organophosphorés.

1.1.1 Triazines


Les analyses ont porté sur 6 molécules différentes, et les fréquences de détection sont représentées dans le tableau ci-dessous (voir également en annexe 4) :

Enterprise to the second of the second						
Atrazine	70	37.8%	726	205	28.2%	5.7
Atrazine déisopropyl	2	1.1%	726		0.6%	0.47
Atrazine déséthyl	80	43.2%	726	247		
Cyanazine	0	0.0%	726		0.0%	
Simazine	8	4.3%	726	20		0.07
Terbuthylazine	1	0.5%	726		0.1%	1

L' atrazine a été quantifiée sur37,8 % des stations de mesure (c' est-à-dire qu' elles ont au moins eu une fois une mesure positive) avec une fréquence de détection de 28,2 % sur l' ensemble des analyses. Son métabolite la déséthylatrazine est détecté avec une fréquence équivalente (43,2 % des stations ont eu au moins une fois une mesure positive, avec une fréquence de détection de 34 % sur l' ensemble des mesures). De même, la simazine et son métabolite la déisopropylatrazine présentent des fréquences équivalentes avec cependant des valeurs moins importantes (la simazine est détectée dans 4,3 % des stations et la déisopropylatrazine dans 1,1 %).


La terbuthylazine n' est détectée qu' une seule fois sur 726 mesures.

Répartition des valeurs maximales en atrazine sur les 185 stations de mesure :

Dans 8 % des cas la valeur maximale observée est supérieure à la limite de potabilité, 0,1 µg/l. Dans 4 stations, au moins une mesure a dépassé le seuil de 0,4 µg/l (qui correspond à 20 % de la norme OMS).

Répartition des valeurs maximales en déséthylatrazine sur les 185 stations de mesure :

Pour la déséthylatrazine, ce sont <u>plus</u> de 17 % des stations qui ont eu une valeur maximale supérieure à 0,1 <u>ug/l.</u> La contamination par la déséthylatrazine est plus importante que par l' atrazine(43,2 % contre 37,8 %).

Ces deux substances sont généralement détectées dans les mêmes types de réservoirs, au niveau des mêmes stations de mesure.

Les triazines ont une part importante dans la pollution des eaux souterraines, surtout dans les réservoirs alluviaux et les réservoirs calcaires (voir les cartes de répartition de l' atrazine et de la déséthylatrazine en annexe 5). Les calcaires de l' oxfordien semblent particulièrement touchés par cette pollution. Le Dogger semble moins touché par l' atrazine, et plus par la déséthylatrazine.

Si la pollution de la nappe d'Alsace aux triazines est désormais considérée comme connue, le RBES montre clairement que les aquifères calcaires de l'oxfordien, du Dogger, et de la nappe alluviale de la Meuse semblent être encore plus touchés.

1.1.2 Urées substituées

Les analyses ont été effectuées sur 6 molécules dont 2 n' ont jamais été détectés. Les fréquences de détection de ces paramétres sont regroupées dans le tableau suivant:

et an et e			1				e e de la companya de
0.1							
Chlortoluron		8	4.3%	726	17	2.3%	0.96
Diuron		4	2.2%	726	5	0.7%	0.23
Flufenoxuron		o	0.0%	726	0	0.0%	<0.1
Isoproturon		14	7.6%	726	19	2.6%	1.52
Linuron	1	2	1.1%	726	2	0.3%	0.26
Néburon		0	0.0%	726	0	0.0%	<0,05

Sur les 185 stations de mesure, 21 ont présenté une détection au moins une fois pour au moins une des substances.

<u>L' isoproturon est la substance la**plus** souvent retrouvée dans les analvses</u> : **2,6** % des mesures sont positives. La deuxiéme substance la plus souvent rencontrée est le chlortoluron dont **2,3** % des mesures sont positives. Le diuron et le linuron sont également détectes avec cependant une fréquence plus faible.

Ces substances sont principalement détectées dans les aquifères calcaires, avec une prédominance pour la bordure Nord du Dogger, et l'oxfordien.

1.1.3 Composés organochlorés

Les analyses effectuées sur les composés organochlorés qui sont des substances difficilement dégradables concernent 10 molécules. Les principaux résultats sont donnes dans le tableau suivant :

						Apple to the second of the second
						2.4
Alachiore	0	0.0%	726	0	0.0%	<0,1
Aldrine	o'	0.0%	185	o o	0.0%	
Dieldrine	o	0.0%	1 85	0	0.0%	<0,02
HCH alpha	1	0.5%	726	1	0.1%	0.004
HCH bêta	2	1.1%	726	4	0.6%	0.003
HCH delta	0	0.0%	726	0	0.0%	<0,01
HCH gamma	11	5.9%	726	13	1 . a %	0.028
Métazachlore	0	0.0%	726	0	0.0%	<0,05
Métolachiore	3	1.6%	726	5	0.7%	0.13
Trifluraline	0	0.0%			0.0%	<0,01

Parmi les 10 substances recherchées seules 4 sont détectées :

Le lindane (y HCH), dont l' utilisation est interdite depuis le1^{er} juillet 1998 en France, est détecté au niveau de 11 stations (soit 5,9 % des stations du bassin avec une fréquence de 1,8 %). Les analyses ont également montré des résultats positifs pour le β HCH sur 2 stations (1 ,1%), pour l' a HCH sur 1 station(0,5%) et sur 3 stations pour le métolachlore (voir carte en annexe 5).

La nappe d'Alsace est de loin la plus touchée par les organochlores que l'on retrouve également entre Nancy et Neufchâteau de manière moins systématique.

1.1.4 Composés organophosphorés

Ces substances sont en général facilement biodégradables dans les eaux souterraines. Les analyses ont été effectuées sur 10 substances et aucun des composés organophosphorés analysés n' a été détecté dans le bassin

· 不能是一个 140 图 1	· · · · · · · · · · · · · · · · · · ·	A manager 2 con 数据 100 may 4 m 12 m	· · · · · · · · · · · · · · · · · · ·	Actor to the second	9 B 5 2 C 2	· · · · · · · · · · · · · · · · · · ·
		ASSET TO SECURE OF THE		70.782		- 鎌倉衛衛の - 大会によりまします。
Azinphos éthyl	O	0.0%	185	0	0.0%	<0,04
Azinphos méthyl	a	0.0%	185	0	0.0%	<0,03
Chlorpyriphos-éthyl	a	0.0%	185	0	0.0%	<0,03
Diazinon	a	0.0%	185	0	0.0%	<0,05
Dichlorvos	a	0.0%	185	0	0.0%	<0,03
Disulfoton	a	0.0%	185	0	0.0%	<0,05
Fénitrothion	a	0.0%	185	0	0.0%	<0,05
Formothion	C	0.0%	185	0	0.0%	<0,07
Parathion éthyl	C	0.0%	185	0	0.0%	<0,02
Parathion méthyl	C	0.0%	185	0	0.0%	<0.02

1.1.5 Autres phytosanitaires

Outre les pesticides déjà présentés, 7 autres substances ont été analysées :

		The second second				
Aldicarbe	0	0.0%	185	0	0.0%	<0,1
Heptachlore	0	0.0%	185	0	0.0%	<0,01
Heptachlore époxyde	0	0.0%	185	0	0.0%	<0,01
loxynil	0	0.0%	185	0	0.0%	<0,1
Mercaptodiméthur	0	0.0%	185	0	0.0%	<0,1
Paraquat Paraquat	0	0.0%	185	0	0.0%	<10
Diquat	0	0.0%	185	0	0.0%	<10

Ces pesticides n' ont été détectés dans aucune des stations de mesure.

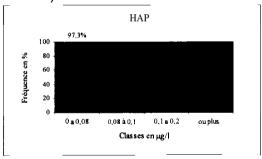
1.2 Micropolluants organiques hors pesticides

Cette famille de micropolluants regroupe les polychlorobiphényles, les hydrocarbures aromatiques polycycliques et les composés organo-halogénés volatils.

1.2.1 Polychlorobiphényles (PCB)

Les congénères recherchés sont les PCB 28, 52, 101, 118, 138, 153 et 180. Cependant il faut noter que leur utilisation est interdite en France depuis 1987. Les résultats obtenus sont présentés dans le tableau suivant :

					\$ 200	the property of
PCB 101	0	0.0%	726	0	0.0%	<0,02
PCB 118	l 0	0.0%	726	o	0.0%	<0,02
PCB 138	l o	0.0%	726	o	0.0%	<0,02
PCB 153	0	0.0%	726	o	0.0%	
PCB 180	l o	0.0%	726	o	0.0%	<0,02
PCB 28	2	1.1%	726	2	0.3%	0.00
PCB 52	0	0.0%	726	0	0.0%	<0,02


Les PCB sont peu détectés, deux mesures se sont révélées positives pour le PCB 28, elles correspondent à 2 stations : les calcaires du Dogger du bassin parisien à PIERREPONT (01124X0026) et les calcaires oxfordiens du bassin parisien à SAULVAUX (02282X0005), avec des teneurs de 0,005 µg/l, soit très proches de la limite de détection, et des incertitudes analytiques.

1.2.2 Hydrocarbures aromatiaues polycycliaues (HAP)

Les analyses portant sur les hydrocarbures aromatiques polycycliques concernent 7 paramétres. Le tableau relatif aux résultats de ces substances est présenté cidessous :

* * * * * * * * * * * * * * * * * * *						The second second second
Benzo(a)pyrène	4	2.2%	191	5	2.6%	0.06
Benzo(b)fluoranthène	3	1.6%	191	4	2.1%	0.06
Benzo(g,h,i)pérylène	3	1.6%	191] 3	1.6%	0.06
Benzo(k)fluoranthène	3	1.6%	191	4	2.1%	0.07
Fluoranthène	5	2.7%	191	6	3.1%	0.08
Hexachlorobenzène	1	0.5%	185	1	0.5%	0.003
Indéno (123cd) pyrène	0	0.0%	191	0	0.0%	<0,05

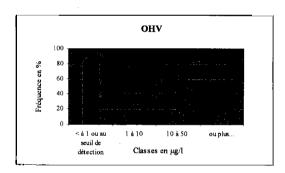
Répartition des valeurs maximales de la somme en HAP sur les 185 stations de mesure (voir carte en annexe 5) :

Tous les composés (mis à part l'indéno(1,2,3 -cd) pyréne) sont détectés au moins une fois. Le plus fréquemment rencontré est le fluoranthéne (avec une fréquence de 3 %).

Les valeurs maximales de la somme des teneurs en HAP sont représentées cartographiquement en annexe 5, seules 2 stations dépassent le seuil 0,2 µg/l : calcaires oxfordiens du bassin parisien à MONT-DEVANT-SASSEY (01116X0098)

avec $0,28 \mu g/l$ et alluvions quaternaires de la Meuse à BALAN (00698X0004) avec $0,28 \mu g/l$.

La zone au nord ouest du bassin **Oxfordien/alluvions** de la Meuse est donc identifiée comme la plus touchée par une pollution en HAP.


1.2.3 Ornano-haloaénés volatils (OHV)

Les résultats des analyses portant sur 7 substances sont regroupes dans le tableau suivant :

		eger Lagragi, gamen er 1 Til Samer Samer 1 Lagrania (Samer Samer S				
Chloroforme	42	22.7%	726	62	8.5%	27
Dichloroéthène-1,2 trans	0	0.0%	726	0	0.0%	<11
Dichloroéthylène-1,2 cis	1	0.5%	726	3	0.4%	140
Tétrachi.Carbone	20	10.8%	726	25	3.4%	3.1
Tétrachloréthène	37	20.0%	726	70	9.6%	64
Trichloréthane-1,1,1	21	11.4%	719	47	6.5%	11.4
Trichloréthylène	24	13.0%	726	60	8.3%	787

<u>Le chloroforme est détecté dans 22,7 % des stations</u>, cependant le tétrachloréthène a la fréquence d'apparition la plus importante avec**9,6** % et les autres molécules sont également détectées à des fréquences non négligeables.

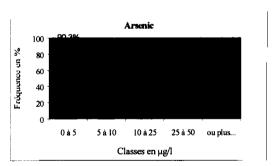
La répartition des stations de mesure dans les différentes classes est la suivante (voir carte en annexe 5):

Près de 18 % des stations présentent une détection de ces substances et une seule dépasse les 50 μ g/l : la station de DUTTLENHEIM (02721X0021) dans les alluvions de la plaine d' Alsace où la valeur maximale de la somme des OHV est de991,4 μ g/l (en avril 1999) dont 787 μ g/l de trichloréthylène, 140 μ g/l de dichloréthylène-1,2 cis et 64 μ g/l de tétrachloréthène.

La pollution par les **organo-halogénés** volatils est donc une réalité, et on peut **s'interroger** sur la présence de chloroforme dans les eaux souterraines même à des concentrations inférieures norme AEP.

Il apparaît également clairement que l' on retrouve les OHV de préférence dans les **aquifères** alluviaux : nappe d' Alsace bien sûr, mais également nappe alluviale de la Moselle, Meurthe et de la Meuse.

1.3 Micropolluants minéraux

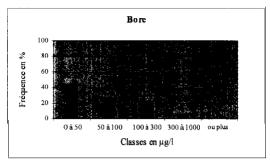

Les analyses effectuées portent sur 13 micropolluants qui se rencontrent souvent à l'état naturel. Les résultats sont présentés dans le tableau ci-dessous :

\$ 10 mm 12 mm 1 mm 1 mm 1 mm 1 mm 1 mm 1	*. *				***	
A Committee of the Comm						$\mathcal{L} = \mathcal{L}_{\mathcal{A}}}}}}}}}}$
Aluminium	124	67.0%	185	124	67.0%	4160
Arsenic	57	30.8%	185	57	30.8%	101
Bore	178	96.2%	725	413	57.0%	1440
Cadmium	67	36.2%	185	67	36.2%	9
Chrome total	37	20.0%	185	37	20.0%	13
Cuivre	67	36.2%	185	67	36.2%	41
Mercure	13	7.0%	196	14	7.1%	0.5
Nickel	28	15.1%	185	28	15.1%	58
Plomb	71	38.4%	185	71	38.4%	16
Sélénium	37	20.0%	192	37	19.3%	54.7
Zinc	77	41.6%	185	77	41.6%	2100
Cyanures libres	2	1.1%	185	2	1.1%	20
Argent	55	29.7%	165	55	29.7%	3

Ces composés pouvant être présents à l'état naturel, il est normal de tous les détecter plus souvent. Notre étude porte principalement sur 2 paramètres : l'arsenic et le bore.

Dans la directive européenne, la limite de qualité pour **l'aluminium** est fixée à 200 µg/l. L' aluminium a été mis en évidence sur 67 % des stations de mesure dont6,5 % dépassent la limite de qualité (soit 12 stations).

L'arsenic est détecté au niveau de 57 stations de mesure dont 3 dépassent la limite de potabilité européenne, 50 µg/l (voir carte en annexe 5) : Calcaires jurassiques du Jura à VIEUX-FERRETTE (04762X0001) : 101 µg/l. Grès du Trias inférieur sous couverture à CRAINVILLIERS (03385X0003) : 85 µg/l. Grés du Trias inférieur sous couverture à POUSSAY (03045X0020) : 54 µg/l. La répartition des stations est la suivante :


La répartition suit en fait ce qui est généralement connu, à savoir de fortes concentrations en Arsenic sur le Dogger du Jura Alsacien, ainsi que dans la nappe des grès du Trias inférieur sous couverture.

Le seuil de 300 μ g/l défini par l' OMS est dépassé au niveau de 13 stations dont 2 présentent des valeurs supérieures à la limite de potabilité de 1000 μ g/l (voir carte en annexe 5) :

Grés du Rhétien de Lorraine à VRECOURT (03374X0003) : 1440 µg/l. Alluvions de la plaine d' Alsaceà PULVERSHEIM (04131X0140) : 1060 µg/l.

La répartition des stations est la suivante :

Une interprétation plus poussée doit être réalisée sur le Bore, que l' on retrouve sur l'ensemble du bassin à des concentrations non négligeables, mais difficilement interprétable en l'état : même si le bore est généralement considéré comme un

indicateur des pollutions anthropiques liées à l'assainissement, il peut être présentà l'état naturel dans certaines roches.

Pour le cadmium, 10,3 % des stations de mesure (soit 19 stations dont 8 appartiennent aux grès du Trias inférieur sous couverture) dépassent le seuil OMS de 3 μg/l et 2,7 % (soit 5 stations dont 3 appartiennent aux grès du Trias inférieur sous couverture) la limite de potabilité de 5μg/l.

Sur l'ensemble du bassin Rhin-Meuse, le chrome total (chrome hexavalent + chrome trivalent) a été détecté au niveau de 20 % des stations. Cependant la limite de potabilité de 50 μ g/l n'est jamais atteinte. Les résultats positifs présentent des teneurs faibles (entre 1 et 13 μ g/l).

Le cuivre est détecté sur 36,2 % des stations, mais il ne constitue aucunement une source de pollution, la concentration la plus élevée étant de 41 μ g/l (Limite de qualité en France : 1000 μ g/l).

Pour le mercure, seules 7 % des stations présentent une détection et aucune ne dépasse le seuil OMS de 1 μg/l, la valeur maximale rencontrée étant de 0,5 μg/l.

Le nickel a été mis en évidence sur 15,1 % des stations, le seuil OMS de 20 μ g/l n' est dépassé qu' au niveau d' une seule station dans les alluvions de la plaine d' Alsaceà HAGUENAU (01987X01 17) avec 58 μ g/l.

Pour le plomb, seules 2 stations atteignent le seuil OMS de 10 μg/l: Collines sous-vosgiennes à REINHARDSMUNSTER (02336X0007) : 16 μg/l. Calcaires du Dogger sous couverture à FRANCHEVILLE (02292X0044) : 10 μg/l.

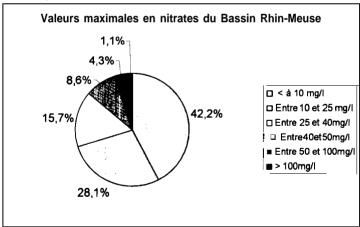
Le sélénium est détecté sur 20 % des stations dont **5,4** % sont supérieurs à 10 μ g/l, seuil OMS. La concentration maximale **54,7** μ g/l est enregistré dans les calcaires oxfordiens du bassin parisien à BRABANT-SUR-MEUSE (01354X0069).

Le zinc a été mis en évidence au niveau de 41,6 % des stations de mesure. Le seuil de 3000 μ g/l définit par l' OMS pour des raisons de goût n' est jamais atteint. 3,24 % des stations dépassent 100 μ g/l.

Pour les cyanures libres, seules 2 stations présentent des résultats positifs avec une teneur maximale de 20 μ g/l :Calcaires oxfordiens du B.P. à PREZ-SOUS-LAFAUCHE (03025X0032) : 10 μ g/l.

Buttes-témoin du calcaire du Dogger à FAUX (01945X0052) : 20 µg/l.

L'argent est détecté sur 29,7 % des stations et la valeur maximale enregistrée est de 3 µg/l (seuil OMS de 10 µg/l).


1.4 Nitrates et composés azotés

Les nitrates proviennent principalement des activités anthropiques agricoles ou urbaines, il est donc important de suivre leur évolution. Tous les résultats relatifs aux composés azotés et aux nitrates sont regroupés dans le tableau suivant :

·		•							, .	5 2 1 1 1 1 N 1 1 3 1	, the street of the street
Nitrates	mg/l NO3	725	<0,1	16,940	102,7	17,007	1,8	4,9	15,3	29,25	42,5
Ammonium	mg/l NH4	725	<0,03	0,039	1,12	0,080	<0,03	<0,03	<0,03		0,118
Azote Kjeldal	h mg/l N	185	<0,5	0,360	3,8	0,540	<0,5	<0,5	<0,5	<0,5	0,7
Nitrites	mg/l NO2	185	<0,03	0,012	0,3	0,025	<0,03	<0,03	<0,03	<0,03	<0,03

Les nitrates sont présents dans l'ensemble du bassin avec une concentration moyenne de 16,9 mg/l NO₃.

La répartition des stations de mesure dans les différentes classes est la suivante (voir carte en annexe 5):

Près de 30 % des stations dépassent le niveau guide de 25 mg/l NO₃ et la limite de potabilité de 50 mg/l NO₃ est dépassée par 5,4 % des stations.

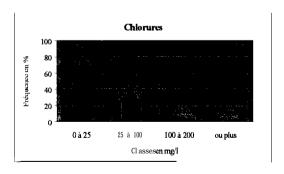
Les 2 stations ayant des teneurs supérieures à 100 mg/l NO₃ sont :

Calcaires du Dogger du bassin parisien à GOURAINCOURT (01363X0007) : sur les 6 mesures effectuées les teneurs sont toujours supérieures à 40 mg/l NO_3 et une maximale à 102,7 mg/l NO_3 en novembre 1999.

Pliocéne de Haguenau à NEEWILLER-PRES-LAUTERBOURG (01993X0129) : 102 mg/l (mars-2000).

L' observation de la carte située en annexe 5 nous indique que la contamination par les nitrates touche principalement les alluvions de la plaine d'Alsace mais également les réservoirs karstiques du Dogger et de l' oxfordien.

1.5 Minéralisation et salinité


Les analyses effectuées portent sur 11 paramètres

	一、 医外 、 (0 4)			### ##################################	med and the production of the second	The second of th
Calcium en mg/l	185	100.0%	725	725	100.0%	735
Chlorures en mg/l	185	100.0%	725	724	99.9%	7000
Conductivité en µS/cm	185	100.0%	725	725	100.0%	21000
Dureté en °F	185	100.0%	725	725	100.0%	241
Fluor en mg/l	179	96.8%	725	483	66.6%	1.307
Magnésium en mg/l	185	100.0%	725	723	99.7%	141
pH	185	100.0%	725	725	100.0%	8.48
Potassium en mg/l	184	99.5%	666	639	95.9%	210
Silicates en mg/l SiO3	185	100.0%	725	724	99.9%	55.1
Sodium en mg/l	185	100.0%	725	707	97.5%	4220
Sulfates en mg/l	185	100.0%	725	725	100.0%	409

La conductivité donne une indication de la quantité de sels ionisés en solution dans l'eau; plus il y a de sels en solution plus la conductivité est importante. La valeur moyenne est de 583 μ S/cm et la médiane est de 561 μ S/cm. La valeur guide de 400 μ S/cm fixée par l'union européenne est dépassée sur78,4 % (145 stations) des stations et 1 ,1 % (2 stations) dépassent la valeur maximale indicative de 2500 μ S/cm.

La concentration moyenne en chlorures est de 43 mg/l et la répartition montre les pollutions connues des mines de potasse d'Alsace, et une forte minéralisation dans les grès sous couverture.

Les différentes stations se répartissent de la manière suivante en fonction de la teneur maximale rencontrée :

Sur la carte située en annexe 5, 5 stations indiquent une teneur supérieure à 200 mg/l qui est la limite de potabilité française :

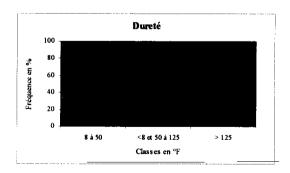
Alluvions de la plaine d'Alsace à PULVERSHEIM (04131X0140) : toujours supérieures à 200 mg/l et une quantité record de 7000 mg/l en avril 1999.

Alluvions de la plaine d' Alsace à ENSISHEIM (04132X0191) : toujours supérieures à 200 mg/l avec une teneur moyenne de 2456 mg/l et une maximale à 2550 en septembre 1999.

Grès du Trias inférieur sous couverture à TOMBLAINE (02306X01 13) : toujours supérieures à 200 mg/l avec une teneur maximale de 451 mg/l en avril 1999. Grès du Trias inférieur sous couverture à HELLIMER (01658X0038) : toujours supérieures à 200 mg/l avec une teneur maximale de 305 mg/l en mars 2000. Grès du Trias inférieur sous couverture à CREHANGE (01652X0127) : toujours supérieures à 200 mg/l avec une teneur maximale de 265 mg/l en mars 2000.

La valeur médiane du **sodium** est de **2,9 mg/l** et la moyenne est de **21,3 mg/l** cette différence indique la présence de valeurs extrêmes plus élevées. La limite de potabilité de 150 **mg/l** est dépassée sur **3,2** % des stations. La station de PULVERSHEIM (04131X0140) dans les alluvions de la plaine d'Alsace présente la valeur maximale de 4220 **mg/l**.

Le chlorure et la sodium s'associant naturellement, les teneurs maximales sont enregistrées au niveau des mêmes stations.


La médiane des concentrations en **calcium** est de **102,8 mg/l** et la moyenne est de **90,3 mg/l**, ce qui reste proche de la référence de qualité française de 100 **mg/l**. La valeur maximale de 735 **mg/l** est enregistrée au niveau de la station de ENSISHEIM (04132X0191) dans les alluvions de la plaine d' Alsace.

La valeur médiane des concentrations en **magnésium** est de **5,7 mg/l** et la moyenne est de **10,5 mg/l**. 3 stations de mesure dépassent 50 **mg/l**, ce qui correspond à la limite de qualité pour l' eau potable :

Alluvions de la plaine d' Alsace à ENSISHEIM (04132X0191) : 141mg/l. Alluvions de la plaine d' Alsaceà PULVERSHEIM (04131X0140) : 66,1mg/l. Grés à roseaux/dolomies du Keuper à VAL-DE-BRIDE (01957X0045) : 50,5 mg/l.

La valeur médiane de la **dureté** est de **29,2** °F et la moyenne est de **26,8** "F. Cependant des valeurs extrêmes ont été mesurées à ENSISHEIM dans les alluvions de la plaine d' Alsace (04132X0191) : teneur moyenne de 233°F et teneur maximale de 241 °F en septembre 1999. Ces valeurs non naturelles sont la conséquence de pollutions.

La répartition dans les différentes classes de qualité est la suivante :

Prés de 81 % des stations ont une eau de dureté normale et 17 % ont une eau trop douce ou trop dure.

Le **fluor** est détecté à une concentration moyenne de 0,142 **mg/l** et la concentration maximale rencontrée est de 1,3 **mg/l**. Sa répartition est par ailleurs bien connue.

Le potentiel Hydrogène **pH** permet de mesurer l'acidité de l'eau. Le pH moyen est de 7,15. Les pH les plus acides se rencontrent dans les grès du Trias inférieur ou au niveau du socle du massif vosgien. Le pH le plus acide mesuré est de 4,57, il a été relevé à BITCHE (01677X0023).

Le potassium possède une moyenne de 2,5 mg/l et la valeur médiane est de 0,7 mg/l. La concentration maximale rencontrée est de 210 mg/l. La limite de qualité pour l'eau potable de 12mg/l est dépassée par 2,7 % des stations du bassin.

Les silicates ont une concentration moyenne de 9 mg/l SiO₃, la valeur de la médiane est de 7 mg/l SiO₃ et la valeur maximale est de 55,1 mg/l SiO₃.

Les sulfates se trouvent en concentration moyenne à 37 mg/l. La limite de qualité européenne pour l'eau potable de 250mg/l est dépassée pour 3,2 % des stations.

1.6 Particules en suspension

Les différents paramètres étudiés sont présentés dans le tableau suivant :

					AMERICAN SAME SAME AND ASSESSED	
Turbidité Néphélométrique	176	96.2%	725	615	64.8%	106
Manganèse en mg/ l	145	78.4%	668	376	56.3%	2.963
Feren mg/I	153	82.7%	668	368	54.8%	64.63

Pour **la turbidité**, 25 % des stations dépassent 2 NTU, la concentration maximale admissible de la réglementation française sur les eaux destinées à la consommation humaine.

Le fer est détecté pour **82**,7 % des stations. Sur l'ensemble du bassin Rhin-Meuse, **18**,92 % des stations dépassent la limite de potabilité, **0**,2 mg/l et **5**,4 % dépassent 1 mg/l.

Le manganèse est détecté sur 78,4 % des stations. La limite de potabilité de 0,05 mg/l est dépassée par 17,3 % des stations.

D' après les résultats obtenus par le SEQ Eaux Souterraines qui ne prend en compte que la turbidité Néphélométrique, 5 stations ont une eau de mauvaise qualité (voir carte en annexe 6) :

Alluvions de la Meuse à BRAS-SUR-MEUSE (01358X0144).

Alluvions de la Meuse à FREBECOURT (03024X0037).

Alluvions de la plaine d'Alsaceà ENSISHEIM (04132X0191).

Calcaires jurassiques du Jura à VIEUX-FERRETTE (04762X0001).

Calcaires jurassigues du Jura à OLTINGUE (04763X0025).

1.7 Matières organiques oxydables

Les résultats des analyses des 3 paramètres relatifs à cette altération sont présentés dans le tableau ci-dessous :

COD en mg/l	725	5,55
DCO en mg/l	725	25
Oxydabilité au KmnO4	725	6,5

Le **carbone organique dissous**, C.O.D., est présent avec une concentration moyenne de **0,9 mg/l** et une valeur maximale de **5,55 mg/l**.

La demande chimique moyenne en oxygène, D.C.O., est de 4 mg/l.

L'oxydabilité au permanganate de potassium en milieu acide et chaud a une valeur moyenne de 0,58 mg/l O_2 . La concentration maximale admissible de 5 mg/l O_2 est dépassée au niveau de 3 stations. D' après les résultats obtenus par le SEQ Eaux Souterraines, ces 3 stations ont une eau de qualité passable par rapport à l' altération matières organiques oxydables (voir carte en annexe 6) :

Calcaires du Dogger du B.P. à YONCQ (00878X0012) : 6,1 mg/l O₂.

Alluvions de la plaine d' Alsaceà PULVERSHEIM (04131X0140) : **6,2 mg/l** O₂. Calcaires jurassiques du Jura à VIEUX-FERRETTE (04762X0001) : **6,5 mg/l** O₂.

La pollution par les matières organiques oxydables des eaux souterraines du bassin Rhin-Meuse est donc mineure.

2 Réservoirs alluviaux

Les aquiferes concernés sont les suivants :

- ➤ Alluvions quaternaires du bassin versant de la Moselle (11 stations de mesure)
- > Alluvions quaternaires du bassin versant de la Meuse (9 stations de mesure)
- Alluvions plio-quaternaires de plaine d'Alsace (41 stations de mesure)
- Cailloutis **pliocènes** du Sundgau (4 stations de mesure)

Ils ont en commun de permettre un accès facile à la ressource, mais qui entraîne nécessairement une vulnérabilité aux pollutions plus importante.

2.1 Pesticides

2.1 .1 Triazines

L' ensemble des résultats des analyses se situe en annexe 7 où ils sont regroupes par aquiferes.

Maria Britania						
Alluvions quaternaires	Atrazine	45	5	11.1%	0.015	0.076
du bassin versant de la Moselle						
Alluvions quaternaires	Atrazine	35	10	28.6%	0.026	0.09
du bassin versant de la Meuse	Déséthylatrazine	35	21	60.0%	0.067	0.21
Alluvions plio-quaternaires	Atrazine	124	71	57.3%	0.038	0.3
de la plaine d'Alsace	Déséthylatrazine	124	74	59.7%	0.042	0.28
Cailloutis pliocènes du Sundgau	Atrazine	16	4	25.0%	0.043	0.19
	Déséthylatrazine	16	11	68.8%	0.041	0.15

La présence de l' atrazine est importante dans l' ensemble de ces aquifères.

L'aquifère le moins touché est celui des alluvions de la Moselle, en effet la fréquence de détection de l'atrazine est de 11 % (elle est inférieure à celle du bassin) et son métabolite, la déséthylatrazine n'a pas été détecté une seule fois.

Les 3 autres aquifères présentent des fréquences de détection, pour l'atrazine et la déséthylatrazine, largement supérieures à celles du bassin (28,2 % pour l'atrazine et 34 % pour la déséthylatrazine).

Dans les alluvions de la plaine d'Alsace prés de 60 % des stations détectent de l'atrazine et de la déséthylatrazine. Le seuil de potabilité de**0**,1 µg/l est dépassé par 3 stations pour l'atrazine et par 4 stations pour la déséthylatrazine :

Agence de l'Eau Rhin-Meuse - Réseau de Bassin des Eaux Souterraines

Pliocène de Haguenau à STUNDWILLER (01991X0079) : 0,3 µg d' atrazine par litre et 0,28 µg de déséthylatrazine par litre.

Alluvions de la plaine d' Alsace à BALDERSHEIM (04133X0001) :0,19 µg d' atrazine par litre et 0,13 µg de déséthylatrazine par litre.

Alluvions de la plaine d'Alsace à BEINHEIM (01996X0023) : $0,14 \mu g$ de déséthylatrazine par litre.

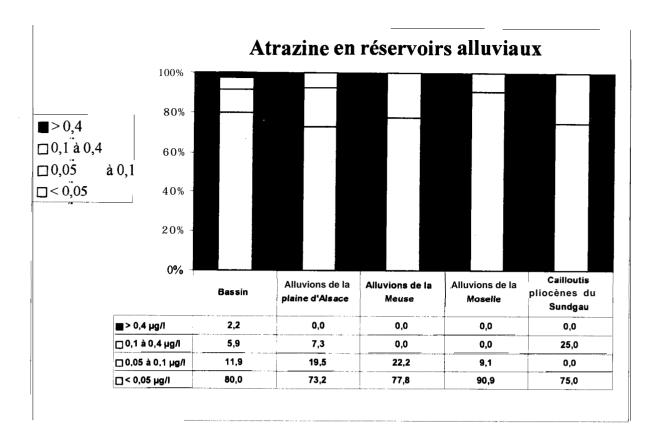
Alluvions de la plaine d'Alsace à HERRLISHEIM (02344X0021) :0,11 μ g d'atrazine par litre et 0,14 μ g de déséthylatrazine par litre.

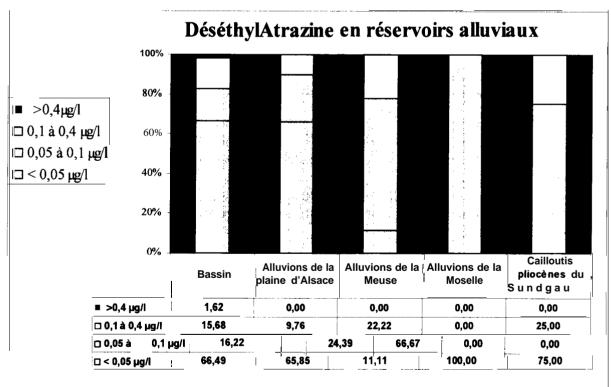
8 des 9 stations situées dans les alluvions de la Meuse présentent une détection de la déséthylatrazine avec une fréquence de 60 % et 5 stations atteignent la limite de potabilité :

Alluvions de la Meuse à VERDUN (01358X0201) : 0,21 µg/l.

Alluvions de la Meuse à DOMPCEVRIN (01922X0006) : 0,19 µg/l.

Alluvions de la Meuse à LAIFOUR (00535X0003) : 0,1µg/l.


Alluvions de la Meuse à BALAN (00698X0004): 0,1 µg/l.


Alluvions de la Meuse à VIGNOT (02283X0005) : 0,1 µg/l.

Les cailloutis du Sundgau sont également contaminés par ces triazines. La déséthylatrazine y est détectée avec la plus forte fréquence, 68,8 % des mesures effectuées sont positives.

Les triazines sont présentes dans l'ensemble de ces aquifères avec des fréquences de détection importantes. 4 stations atteignent ou dépassent la limite de potabilité 0,1 µg/l, pour l'atrazine et 10 stations pour la déséthylatrazine mais aucune n'a encore atteint le seuil de 0,4 µg/l (qui correspond à 20 % de la norme OMS). <u>Il n'empêche que d'un point de vue patrimonial, la situation doit être considérée comme préoccupante.</u>

La répartition des valeurs maximales pour chaque station dans les aquifères alluviaux est la suivante :

2.1.2 Urées substituées

Les urées substituées détectées dans les aquifères alluviaux ne sont pas les plus fréquemment rencontrées dans le bassin Rhin-Meuse.

	水平 使用数 数 在 5000	Western Royal March 1995	1000 000 100 021500, 200 1000 1000 1000 1000 1000 1000 1000		The state of the s	119-18-29
Alluvions quaternaires	Linuron	35	. 2	5.7%	0.032	0.26
du bassin versant de la Meuse						
Alluvions plio-quaternaires	Diuron	124	3	2.4%	0.011	0.08
de la plaine d'Alsace						

Le linuron a dépassé à une seule occasion le seuil de potabilité $0,1 \,\mu g/l$, dans la station de VERDUN des alluvions de la Meuse avec $0,28 \,\mu g/l$.

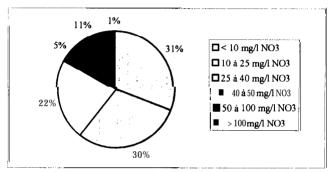
La seconde urée substituée détectée, le diuron a été rencontré dans la plaine d'Alsace où le seuil de potabilité n' a jamais été atteint, la valeur maximale mesurée est de 0,08 µg/l.

2.1.3 Composés organochlorés

Les composés organochlorés n' ont été détectés que dans les alluvions de la plaine d' Alsace :

		magnetic descriptions of the second s	1000 1000 1000 1000 1000 1000 1000 100	And the second of the second o		manufacture of
Alluvions plio-quaternaires	HCH alpha	124	1	0.8%	0.001	0.001
de la plaine d'Alsace	HCH bêta	124	4	3.2%	0.001	0.003
	HCH gamma	124	8	6.5%	0.001	0.028
	Métolachlore	124	5	4.0%	0.017	0.13

Les molécules d' a HCH, de β HCH et de métolachlore ne sont détectées que dans cette partie du bassin Rhin-Meuse. Seul le métolachlore dépasse une fois $0,1\,\mu\text{g/l}$ (le seuil de potabilité), à CERNAY dans les alluvions de la plaine d' Alsace avec $0,13\,\mu\text{g/l}$ (04124X0059).


Le lindane (γ HCH), dont l' utilisation a été interdite, est détecté dans 6 stations de mesure des alluvions de la plaine d' Alsace où la valeur maximale rencontrée est de 0,028 μ g/l (donc peu importante).

2.2 Nitrates et composés azotés

Les principaux résultats statistiques sont résumés dans le tableau ci dessous : Les nitrates apparaissent comme une source de pollution, principalement sur la nappe d' Alsace, avec une moyenne de 29.6mg/l et une médiane de 24.8 mg/l.

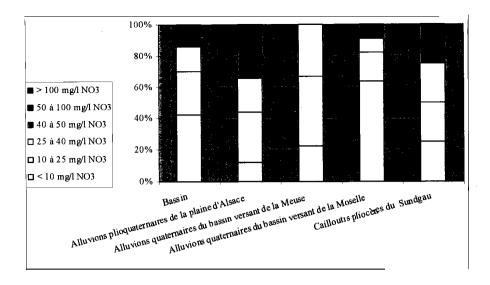
Alluvions										
plioquaternaires de la plaine										
d'Alsace 091	Ammonium	mg/INH4	124.0	< 0.03	0,0	0.4	0.0 < 0.03	<0,03 <0,03	0,0	0,0
41 stations	Azote Kjeldahl	mg/IN	41,0	<0,5	0,3	<0,5	0.0 < 0.5	<0.5 <0.5	<0.5	<0,5
	Nitrates	mg/iNO3	124,0	3,1	29,6	102,0	21,1 8,1	14.4 24.9	44,4	54,0
	Nitrites	mg/INO2	41,0	<0,02	0,0	0,1	0,0_<0,02	<0,02_<0,02_	<0,02	0,0
Alluvions quaternaires du										
bassin versant de										
9 stations 304	Ammonium	rma/11N4	35,0	<0,02	0,0	0,1	0,0 <0,02	<0,02 0,0	0.0	0,0
3 SIGNONS	Azote Kjeldahl		9,0	<0.1	0,1	0,2	0.0 <0.1	0,1 0,1	0,1	0,1
	Nitrates	mg/I NO3	35,0	0,3	14,8	36,8	9,6 2,4	9,9 12,0	22,3	26,9
Alluvions	Nitrites	mg/I NO2	9,0	<0,03	0,0	<0,03	0,0_<0,03	<0,03_<0,03	<0,03	<0,03
quaternaires du bassin versant de										
la Moselle	Ammonium	mg/INH4	45,0	<0,01	0,0	0,2	0,0 <0,01	<0,01 0,0	0,0	0,1
11 stations	Azote Kjeldahl	mg/1N	11,0	0,1	0,7	2.1	0.7 0.1	0,2 0,5	0,7	2.0
	Nitrates Nitrites	mg/INO3	45,0	<0,1 <0,001	10,4	55,3	13,7 <0,1	2,9 4,4	13,2	26,8
Cailloutis	Nitrites	mg/l NO2	11,0	NO,001	0,0	_0,0_	0,0_<0,001	<u><0,001</u> 0,0	0,0	0,0
pliocènes du										
Sundgau 173	Ammonium	mg/INH4	16,0	<0,03	0,0	0,0	0,0 <0,03	<0,03 <0,03	<0,03	<0,03
4 stations	Azote Kjeldahl	mg/IN	4,0	<0,5	0,3	<0,5	0,0 <0,5	<0,5 <0,5	<0,5	<05
	Nitrates Nitrites	mg/INO3	16,0	3,0 <0.02	22.8	50,4	17,0 3,1	11,4 20,4	30,8	47.5
<u> </u>	MILLIES	mg/INO2	4,0	₹0,02	0,0	<0,02	0,0 <0,02	<0,02 <0,02	<0,02	<0,02

La répartition des stations appartenant aux réservoirs alluviaux en fonction de leur concentration maximale est la suivante :

Les nitrates apparaissent en pollution diffuse : 39 % des stations des réservoirs alluviaux dépassent le niveau guide européen de 25 $mg/l\ NO_3$ et 12 % la limite de potabilité de 50 $mg/l\ NO_3$:

Pliocéne de Haguenau à NEEWILLER-PRES-LAUTERBOURG (01993X0129) : 102 mg/l NO_3

Pliocéne de Haguenau $\bf \dot{a}$ STUNDWILLER (01991X0079): **99,6 mg/l NO₃** (les 4 mesures effectuées sont supérieures $\bf \dot{a}$ 88 **mg/l NO₃**).


Alluvions de la plaine d' Alsaceà ZELLWILLER (03074X0002) : **72,7 mg/l NO₃** (les 3 mesures effectuées sont supérieures à 67 **mg/l NO₃**).

Alluvions de la plaine d'Alsace à VILLAGE-NEUF (04461X0025) : **60,6 mg/l NO₃** (les 3 mesures effectuées sont supérieures à 50 **mg/l NO₃**).

Alluvions de la plaine d'Alsace à ENSISHEIM (04132X0191) : 56 mg/l NO₃ (les 3 mesures effectuées sont supérieures à 50 mg/l NO₃).

Alluvions de la Moselle à LOISY (01938X0105) : 55,3 mg/l NO₃ (les 4 mesures effectuées sont supérieures à 37 mg/l NO₃).

La répartition des stations en fonction des concentrations maximales en nitrates dans les différents aquifères est la suivante :

Les nitrates apparaissent comme une source de pollution importante sur la nappe d'Alsace, avec une moyenne de 29.6 mg/l qui dépasse la valeur guide européenne (25 mg/l NO₃) et une médiane de 24.8 mg/l.

Dans la plaine d'Alsace, 56 % des stations ont des teneurs supérieures à 25 mg/l NO₃ et 12 % supérieures à la limite de potabilité.

Les alluvions de la Moselle possèdent 2 stations avec des teneurs supérieures à 25 mg/l NO₃ dont 1 est supérieure à 50 mg/l NO₃. La concentration moyenne est de 10,3 mg/l NO₃.

La nappe de la Meuse est également touchée par cette pollution, 3 stations présentent un maximum supérieur au niveau guide européen.

Des teneurs en nitrates importantes sont également détectées dans les cailloutis du Sundgau où les 4 stations sont réparties dans chacune des classes de mesure.

2.3 Micropolluants organiques hors pesticides

2.3.1 Organo-halogénés volatils (OHV)

Les résultats des analyses portant sur les OHV sont regroupés dens le tableau suivant :

the state of the s	SCHOOL BANKS SEE	Alternative Control		All the second	provide a con-	*1 }
Alluvions quatemaires	Chloroforme	45	12	26.7%	0.338	4.9
du bassin versant de la Moselle	Tétrachi.Carbone	45	9	20.0%	0.02;	0.276
	Tétrachloréthène	45	13	28.9%	0.084	0.798
	Trichloréthane-1,1,1	45	3	8.7%	0.013	0.262
	Trichlorethylène	45	4	8.9%	0.022	0.305
Alluvions quaternaires	Chloroforme	35	3	8.8%	0.454	5.8
du bassin versant de la Meuse	Tétrachloréthène	35	3	8.8%	0.071	0.6
	Trichloréthane-1,1,1	35	3	8.8%	0.077	0.7
	Trichlorethylène	35	1	2.9%	0.120	0.8
Alluvions plio-quaternaires	Chloroforme	124	24	19.4%	0.356	2.9
de la plaine d' Alsace	Dichloroéthylène-1,2cis	124	3	2.4%	12.202	140
	Tétrachl.Carbone	124	8	4.8%	0.128	3.1
	Tétrachloréthène	124	38	29.0%	ı . 240	64
	Trichloréthane-1,1,1	124	40	32.3%	0.510	11.4
	Trichloréthylène	124	51	41.1%	8.857	787

La présence des OHV dans les réservoirs alluviaux est importante : sur l'ensemble du bassin, plus de la moitié des stations présentant une détection à ces composes se situe dans les réservoirs alluviaux. Les OHV sont fréquemment détectés dans les alluvions de la Moselle mais avec des teneurs inférieures 8 celles aux valeurs guides OMS et aux normes de potabilité. Par contre, dans les alluvions de la plaine d'Alsace, les teneurs maximales détectées sont bien supérieures aux normes de potabilité :

Au niveau de la station de DUTTLENHEIM (02721X0021), la valeur maximale de la somme des OHV est de 991,4 µg/l (en avril 1999) dont 787 µg/l de trichlorethylène, 140 µg/l de dichloréthylène-1,2 cis et 64 µg/l de tétrachlorethéne. Cependant depuis cette date la somme des OHV tend à diminuer tout en restant importante : 310,3 µg/l en septembre 1999 et 64,25 µg/l en mars 2000.

Hydrocarbures aromatiques polycycliques (HAP)

Ils ne sont détectés que dans les alluvions de la Meuse et de la plaine d'Alsace.

Alluvions quaternaires	Benzo(a)pyrène	10	2	20.0%	0.012	0.06	
du bassin versant de la Meuse	Benzo(b)fluoranthène	10	2	20.0%	0.012	0.06	
	Benzo(k)fluoranthène	10	2	20.0%	0.008	0.03	
	Fluoranthène	10	2	20.0%	0.014	0.08	
Alluvions plio-quaternaires	Benzo(a)pyrène	41	1	2.4%	0.001	0.001	
de la plaine d' Alsace	Benzo(g,h,i)pérylène	41	1	2.4%	0.001	0.003	
	Hexachlorobenzène	41	1	2.4%	0.001	0.003	

4 stations présentent une détection parmi lesquelles la station de BALAN (00698X0004) dans les alluvions de la Meuse où la somme des HAP atteint 0,18 µg/l. Cependant dans l'ensemble, les teneurs restent faibles.

2.4 Particules en suspension

Les principaux résultats sont présentés dans le tableau suivant :

The second of th	The second secon		magnet in gige to provide using inches by a	Traps of the services	A	
60 days - 10 and	A PARAGONAL AND	The second secon	The second of the second of	and a second second		
Alluvions quaternaires	Turbidité Néphélométrique	45	30	66.7%	1.921	32
du bassin versant de la Moselle	Manganèseen mg/ l	34	18	52.9%	0.081	0.752
	Fer en mg/ l	34	15	44.1%	0.424	6.785
Alluvions quaternaires	Turbidité Néphélométrique	35	35	100.0%	1.435	40.3
du bassin versant de la Meuse	Manganèse en mg/ l	35	24	68.6%	0.006	0.06
	Fer en mg/l	35	16	45.7%	0.043	0.824
Alluvions plio-quaternaires	Turbidité Néphélométrique	124	91	73.4%	0.789	38
delaplained' Alsace	Manganèseen mg /l	124	37	29.8%	0.044	1.48
	Fer en mg/l	124	70	56.5%	0.070	2.84
Cailloutis pliocènes du Sundgau	Turbidité Néphélornétrique	e 16	15	93.8%	1.896	11
	Manganèseen mg/l	16	5	31.3%	0.003	0.012
	Fer en mg/ l	16	9	56.3%	0.058	0.332

Parmi les réservoirs alluviaux, 8 stations présentent au moins une détection de la turbidité néphélomètrique supérieure à la concentration maximale admissible de la réglementation française sur les eaux destinées à la consommation humaine (2 NTU). Généralement dans ces stations, les valeurs les plus fortes sont enregistrées au début du printemps pendant les mois de mars avril, ce qui indique une vulnérabilité plus importante à cette période.

2.5 Matières organiques oxydables

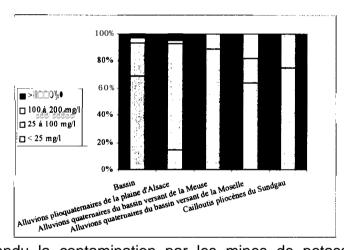
Les principaux résultats sont regroupés dans le tableau ci-dessous :

The second secon	Annihitation Annihitation 2018, confession of residence		The second secon		Briggs - Exist	<i>5</i> . 5
Exercise Constitution Williams	The Later was a second	Service Control of the Sametrania	And the second	Strike Balance	22.753 (15)	1002
Alluvions quaternaires	C.O.D.	45	45	100,0%	1,704	4,3
du bassin versant de la Moselle	D.C.O.	45	21	46,7%	4,311	12
	Oxydab. KMn04 acide chaud	45	45	100,0%	0,437	1,5
Alluvions quaternaires	C.O.D.	35	30	85,7%	0,799	1,7
du bassin versant de la Meuse	D.C.O.	35	28	80,0%	3,543	11
	Oxydab. KMnO4 acide chaud	35	15	42,9%	0,587	2,4
Alluvions plio-quaternaires	C.O.D.	124	124	100,0%	0,956	5,15
de la plaine d' Alsace	D.C.O.	124	21	16,9%	5,593	22
	Oxydab. KMn04 acide chaud	124	84	67,7%	0,477	6,2
Cailloutis pliocènes du Sundgau	C.O.D.	16	16	100,0%	0,706	1,5
	D.C.O.	16	1	6,3%	2,719	6
	Oxydab. KMn04 acide chaud	16	11	68,8%	0,381	1,5

Les valeurs maximales obtenues pour le carbone organique dissous ne sont pas importantes et ne dépassent pas 6 mg/l.

En ce qui concerne l'oxydabilité au permanganate de potassium en milieu acide et chaud, seule 1 station dans les alluvions de la plaine d'Alsace à PULVERSHEIM (04131X0140) a dépassé une fois les 5 mg/l O_2 qui constituent la concentration maximale admissible de la réglementation française sur les eaux destinées à la consommation humaine.

Les matières organiques oxydables sont donc peu retrouvées en réservoir alluvial, ce qui est hydrogéologiquement logique.


2.6 Minéralisation et salinité

L'ensemble des résultats relatifs à la minéralisation et 8 la salinité se trouve en annexe 7 où ils sont classes par système aquifere.

Pour la conductivité, 89 % des stations des réservoirs alluviaux dépassent 400 **µS/cm** qui est la valeur guide européenne et 3 % (2 stations : **à** PULVERSHEIM et **à** ENSISHEIM) dépassent la valeur indicative 2500 **µS/cm**.

Les stations de mesure de PULVERSHEIM (04131X0140) et d'ENSISHEIM (04132X0191) possèdent des teneurs maximales en sodium avec des valeurs respectives de 4220 mg/l et 668 mg/l. A ENSISHEIM, les teneurs détectées sont constamment aux alentours de 600 mg/l tandis qu' à PULVERSHEIM, les autres teneurs détectées sont aux alentours de 200 mg/l.

Les stations de mesure des réservoirs alluviaux se repartissent de la manière suivante en fonction de la teneur maximale en chlorures :

On retrouve bien entendu la contamination par les mines de potasse d'Alsace, pollution bien suivie par ailleurs.

Seules 2 stations dépassent la limite de potabilité de 200 mg/l.

Elles se situent toutes deux dans les alluvions de la plaine d' Alsace :

- à PULVERSHEIM (04131X0140) avec une teneur maximale de 7000 mg/l en avril 1999, puis 346 mg/l en septembre 1999 et 408 mg/l en mars 2000.
- à ENSISHEIM (04132X0191) avec une teneur maximale de 2550 mg/l en septembre 1999 et une concentration moyenne de 2456 mg/l.

Pour le calcium, 2 stations présentent des teneurs extrêmes :

Alluvions de la Moselle à RUPT-SUR-MOSELLE (03766X0009) : 3,9 mg/l.

Alluvions de la plaine d'Alsaceà ENSISHEIM (04132X0191) : 735 mg/l.

Cependant sur l'ensemble des mesures effectuées dans les réservoirs alluviaux, la concentration moyenne est de 108 mg/l.

En ce qui concerne le magnésium, 2 stations dans les alluvions de la plaine d'Alsace ont des teneurs supérieures à la limite de qualité pour l'eau potable (50 mg/l):

Alluvions de la plaine d' Alsace à ENSISHEIM (04132X0191) : 141mg/l. Alluvions de la plaine d' Alsaceà PULVERSHEIM (04131X0140) : 66,1 mg/l.

La plus forte valeur de dureté se retrouve dans les alluvions de la plaine d' Alsaceà ENSISHEIM (04132X0191) : 241 "F, ce qui semble normal étant donné les valeurs obtenues en calcium et en magnésium.

Pour le potassium, 4 stations dépassent la limite de qualité 12 mg/l :

Alluvions de la plaine d'Alsace à PULVERSHEIM (04131X0140) : 210mg/l.

Pliocène de Haguenau à NEEWILLER-PRES-LAUTERBOURG (01993X0129) : 106 mg/l.

Alluvions de la plaine d' Alsaceà MEYENHEIM (03787X0101) : 21,5 mg/l.

Alluvions de la Meuse à VIGNOT (02283X0005) : 15,7 mg/l.

Au niveau de 3 stations, les teneurs en sulfates sont ou ont été supérieures à la limite de qualité européenne pour l'eau potable 250mg/l:

Pliocène de Haguenau à HAGUENAU (01987X01 17) : les 3 mesures effectuées sont supérieures à la limite de qualité et la concentration maximale est de 409 mg/l. Alluvions de la plaine d' Alsace à PULVERSHEIM (04131X0140) : 347mg/l.

Alluvions de la Meurthe à FRAIMBOIS (02691X0006) : 281 mg/l.

Il est à noter que 2 stations paraissent particulièrement touchées par ces différents composés : les stations de PULVERSHEIM (04131X0140) et d'ENSISHEIM (04132X0191).

2.7 Micropolluants minéraux

L' ensemble des résultats relatifs aux micropolluants minéraux se trouve en annexe 7 où ils sont classés par système aquifère.

La limite de qualité européenne pour l'aluminium est de200µg/l. Elle est dépassée par 4 stations :

Alluvions de la plaine d' Alsaceà DUTTLENHEIM (02721X0021) : 2480 µg/l.

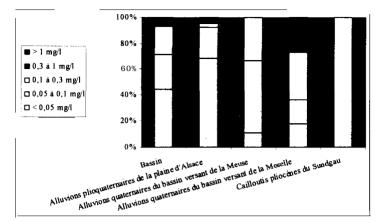
Alluvions de la Meuse à FREBECOURT (03024X0037) : 2020 µg/l.

Alluvions de la plaine d'Alsaceà ENSISHEIM (04132X0191) : 460 µg/l.

Alluvions de la Meurthe à FRAIMBOIS (02691X0006) : 224 µg/l.

Pour le bore, le seuil OMS de 300 µg/l est dépassé par 5 stations de mesure dont une dépasse le seuil de potabilité 1000 µg/l :

Alluvions de la plaine d' Alsaceà PULVERSHEIM (04131X0140) : 1060 µg/l.


Alluvions de la Meurthe à FRAIMBOIS (02691X0006) : 447 µg/l (depuis avril 1999, les valeurs détectées n' ont cessé d' augmenter).

Alluvions de la Moselle à MAXE(LA) (01385X0059) : 371 µg/l détectés en avril 1999 mais depuis les teneurs relevées sont en diminution.

Pliocène de Haguenau à NEEWILLER-PRES-LAUTERBOURG (01993X0129) : 338 µg/l.

Alluvions de la Moselle à MANOM (01145X0021) : 317 µg/l.

La répartition des stations pour le bore dans les aquifères alluviaux est la suivante :

Les teneurs les plus importantes sont effectivement détectées dans les alluvions de la plaine d' Alsace et dans les alluvions de la Moselle.

Le seuil OMS pour le cadmium est de 3 μ g/l, la station de RUPT-SUR-MOSELLE (03766X0009) dans les alluvions de la Moselle atteint ce seuil et la station de SAINTE-MARGUERITE (03066X0003) dans les alluvions de la Meurthe enregistre une valeur de 5μ g/l.

En ce qui concerne le nickel, seule la station de HAGUENAU (01987X01 17) dans les alluvions de la plaine d'Alsace a dépassé le seuil OMS 20µg/l, la concentration qui y a été relevée est de 58 µg/l.

Les autres micropolluants n' ont pas été détectés dans les réservoirs alluviaux, ils ne sont donc pas source de pollution.

2.8 Synthèse

Dans les réservoirs alluviaux, la répartition des familles chimiques les plus déclassantes est la suivante (d'après l'étude effectuée à l'aide du SEQ Eaux Souterraines version 0) :

Pesticides 41 %

Nitrates 31 %

Micropolluants organiques 16 %

Particules en suspension 9 %

Composes azotés 2%

Matières organiques oxydables 1%

On notera également la forte présence de bore, qui n'apparait pas dans les résultats SEQ (Cf explication en annexe)

Les aquifères les plus sensibles à ces pollutions sont ceux de la plaine d' Alsace et du bassin versant de la Moselle

3 Réservoirs calcaires

Les aquifères concernés sont les suivants :

Calcaires du Tithonien (ex Portlandien) du bassin parisien (2 stations de mesure)

Calcaires oxfordiens du bassin parisien (15 stations de mesure)

Calcaires du Dogger du bassin parisien (34 stations de mesure)

Calcaires du Muschelkalk de Lorraine (7 stations de mesure)

Ces aquiferes sont fissures, fracturés et peuvent localement être karstifiés. Souvent, les circulations d' eau y sont très importantes ce qui implique des temps de transfert pouvant être très rapides avec souvent activation de plusieurs systèmes de circulation.

3.1 Pesticides

3.1 .1 Triazines

L'ensemble des résultats des analyses se situe en annexe 7 où ils sont regroupés par aquifères.

Calcaires au l'ithonien	Atrazine	6	3	50.0%	0.041	0.09
dubassin parisien	Déséthylatrazine	6	2	33.3%	0.063	0.2
Calcaires oxfordiens	Atrazine	92	38	41.3%	0.107	5.7
dubassin parisien	Déséthylatrazine	92	45	48.9%	0.126	0.74
Calcaires du Dogger	Atrazine	205	58	28.3%	0.035	0.7
dubassin parisien	Déséthylatrazine	205	76	37.1%	0.065	0.37
Calcaires du Muschelkalk	Atrazine	29	4	13.8%	0.035	0.66
de Lorraine						

L'atrazine et la déséthylatrazine sont **très** présents dans l'ensemble des aquiferes calcaires.

L'aquifère le moins touche est celui des calcaires du Muschelkalk de Lorraine où seules 13,8 % des mesures effectuées se sont révélées positives, cependant une valeur maximale de $0,66 \,\mu\text{g/l}$, donc supérieure au seuil de potabilité, a été détectée à MANDEREN (01144X0019).

Les valeurs maximales obtenues dans les calcaires du Tithonien proviennent de la station de VILLE-SUR-COUSANCES (01612X0071) : $0.2 \mu g/l$ de déséthylatrazine par litre et $0.09 \mu g/l$ d' atrazine par litre.

Les 2 aquifères les plus touches sont ceux de l'oxfordien et du Dogger

Dans les calcaires de l'oxfordien, 60 % des stations détectent de l'atrazine et 80 % de la déséthylatrazine! Par contre, en terme de détection par analyse, les chiffres deviennent 41.3% et 48.9%. Ceci indique que la pollution est très diffuse, mais également la variabilité d'une même station au cours du temps.

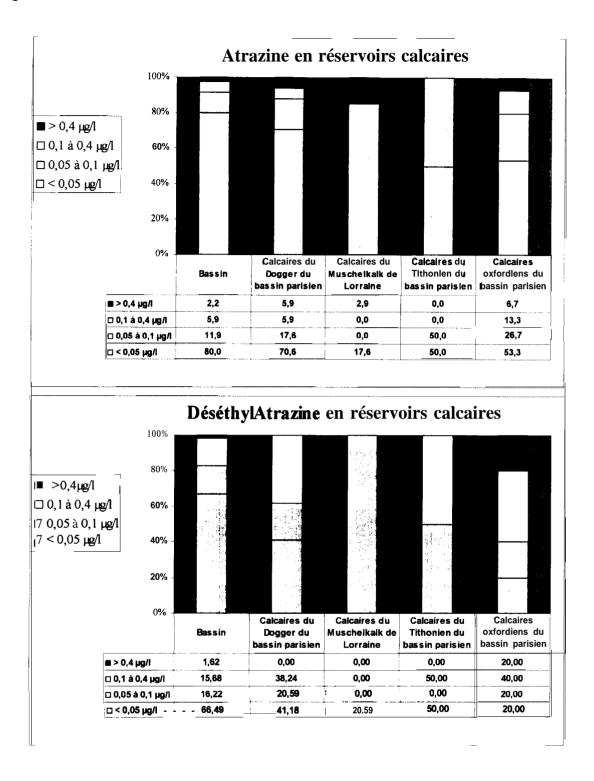
Le seuil de potabilité de $0,1\,\mu\text{g/l}$ est dépassé par 3 stations pour l'atrazine (dont 1 supérieure à $0,4\,\mu\text{g/l}$) et par 9 pour la désèthylatrazine (dont 3 supérieures à $0,4\,\mu\text{g/l}$):

Calcaires oxfordiens du B.P. à CHERMISEY (03022X0002) : 5,7 µg d' atrazine par litre.(Valeur forte non reproduite depuis)

Calcaires oxfordiens du B.P. à TANNAY (00876X0011) : 0,74 µg de déséthylatrazine par litre.

Calcaires oxfordiens du B.P. à CHERMISEY (03022X0002) : $0,67 \mu g/l$ de déséthylatrazine par litre.

Calcaires oxfordiens du B.P. à GENICOURT-SUR-MEUSE (01625X0078) : **0,41** µg/l de dèsèthylatrazine par litre.


41 % des stations du calcaire du Dogger présentent une détection à l'atrazine et 64 % à la dèséthylatrazine. En ce qui concerne l'atrazine, 4 stations ont des valeurs supérieures à la limite de potabilité et 2 de ces stations dépassent le seuil de 0,4 $\mu g/l$:

Calcaires du Dogger du B.P. à PIERRE-LA-TREICHE (02296X0021) : 0,7 µg/l. Calcaires du Dogger du B.P. à NEUFCHATEAU (03024X0024) : 0,45 µg/l.

Pour la déséthylatrazine, 44 % des stations (soit 15 stations) présentent des valeurs supérieures à la limite de potabilité 0,1 µg/l. Cependant aucune de ces stations n' a dépassé le seuil de 0,4 µg/l.

Dans les aquifères calcaires, les triazines sont fréquemment détectées et présentent des teneurs élevées supérieures à la limite de potabilité $0,1\,\mu g/l$ (14 % des stations pour l' atrazine et 43 % pour la déséthylatrazine) et au seuil de $0,4\,\mu g/l$ qui correspond à 20 % du seuil OMS (7 % des stations pour l' atrazine et 5 % pour la déséthylatrazine).

La répartition des valeurs maximales de chaque station dans les aquifères calcaires est la suivante :

3.1.2 Urées substituées

Les urées substituées rencontrées dans les aquifères calcaires sont les suivantes

	g over the state of the state o					4.856
Calcaires du Tithonien	Isoproturon	6	1	16.7%	0.034	0.08
du bassin parisien						
Calcaires oxfordiens	Chlortoluron	92	4	4.3%	0.039	0.96
du bassin parisien	Isoproturon	92	8	8.7%	0.059	1.52
Calcaires du Dogger	Chlortoluron	205	13	6.3%	0.030	0.22
du bassin parisien	Diuron	205	2	1.0%	0.027	0.23
1	Isoproturon	205	10	4.9%	0.029	0.26

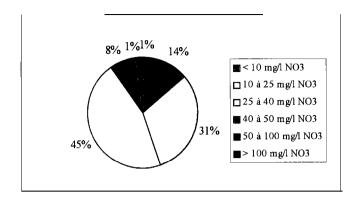
Les aquifères de l'oxfordien et du Dogger sont particulièrement sensibles à ces composés.

Sur l'ensemble des réservoirs calcaires :

- 15,5 % des stations de mesure présentent des concentrations en isoproturon supérieures ou égales à $0,1\mu g/l$.
- 8,6 % des stations de mesure présentent des concentrations en chlortoluron supérieures ou égales à $0,1\,\mu g/l$.
- 3,4 % des stations de mesure présentent des concentrations en diuron supérieures ou égales à $0,1\,\mu g/l$.

3.1.3 Ornanochlorés

Les résultats des analyses effectuées sur les organochlorés dans les aquifères calcaires peuvent se résumer dans le tableau suivant :

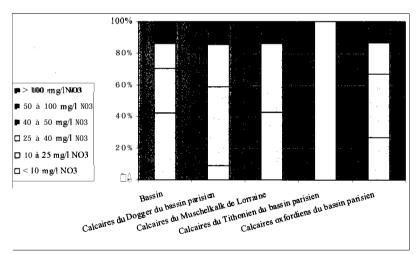

	The second secon	Jack Strain Strain All Jack Strain Strain Strain				g garantan n
Calcaires oxfordiens	HCH gamma	92	1	1.1%	0.003	0.01
du bassin parisien						
Calcaires du Dogger	HCH gamma	205	4	2.0%	0.003	0.02
du bassin parisien						

Le lindane (y HCH), dont l' utilisation est interdite en France depuis le1^{er} juillet 1998, est le seul composé détecté. Il **a** été mesure au niveau de 5 stations à des teneurs peu importantes.

3.2 Particules en suspension

Les principaux résultats sont présentés dans le tableau suivant :

La répartition des stations de mesure appartenant aux réservoirs calcaires en fonction de leur concentration maximale en nitrates est la suivante :



De nouveau le caractère diffus de la pollution nitratée ressort : 55 % des stations dépassent le niveau guide européen de 25 mg/l NO₃ et 2 % la limite de potabilité de 50 mg/l NO₃ :

Calcaires du Dogger du B.P. à GOURAINCOURT (01363X0007) : 102,7 mg/l NO₃ (les 6 mesures effectuées sont supérieures à 46 mg/l de NO₃).

Calcaires du Dogger du B.P. à JOUAVILLE (01377X0063) : **69,3 mg/l NO₃** (les 6 mesures effectuées sont supérieures à 41 **mg/l NO₃**).

La répartition des stations en fonction des concentrations maximales en nitrates dans les différents aquifères est la suivante :

L'aquifère calcaire le plus touché par les nitrates est celui du Dogger, 41 % des stations (c' est-à-dire 14 stations) présentent des teneurs supérieures à $25mg/l NO_3$ et 6 % (c' est-à-dire 2 stations) supérieures à la norme de potabilité. La concentration moyenne est de $20 mg/l NO_3$.

Dans les calcaires oxfordiens, 33 % des stations (soit 5 stations) ont des teneurs supérieures à 25 mg/l NO₃, mais aucune n' a atteint la limite de potabilité. La concentration moyenne est de 15,7 mg/l NO₃.

Dans les calcaires du Muschelkalk de Lorraine, seule 1 station possède une valeur maximale supérieure au niveau guide européen 25 mg/l NO_3 . La concentration moyenne rencontrée dans cet aquifère est de 15 mg/l NO_3 .

Les 2 stations des calcaires du Tithonien présentent des valeurs supérieures au niveau quide européen.

3.4 Micropolluants organiques hors pesticides

3.4.1 Polychlorobiphényles (PCB)

Les résultats obtenus se trouvent dans le tableau suivant :

mga izi ti kimini, akiguk ji i				the second second second	re the elegant and respect
Calcaires oxfordiens du bassin parisien	PCB 28	92	1	1.1%	0.005
Calcaires du Dogger du bassin parisien	PCB 28	205	1	0.5%	0.005

L'utilisation des PCB est interdite en France depuis 1987, cependant 2 stations présentent une détection faible mais **détectable** :

Calcaires du Dogger du B.P. à PIERREPONT (01124X0026) : 0,005 µg/l.

Calcaires oxfordiens du B.P. à SAULVAUX (02282X0005): 0,005 µg/l.

3.4.2 Hydrocarbures aromatiques polvcvcliaues (HAP)

Les principaux résultats des analyses sont regroupes dans le tableau suivant :

Calcaires du Tithonien	Fluoranthène	3	1	33.3%	0.007	0.01
du bassin parisien						
Calcaires oxfordiens	Benzo(a)pyrène	17	1	5.9%	0.008	0.06
du bassin parisien	Benzo(b)fluoranthène	17	1	5.9%	0.008	0.06
	Benzo(g,h,i)pérylène	17	1	5.9%	0.027	0.06
	Benzo(k)fluoranthène	17	1	5.9%	0.009	0.07
	Fluoranthène	17	1	5.9%	0.006	0.02
Calcaires du Dogger	Benzo(a)pyrène	36	1	2.8%	0.005	0.02
du bassin parisien	Benzo(b)fluoranthène	36	1	2.8%	0.005	0.02
	Benzo(k)fluoranthène	36	1	2.8%	0.005	0.01
	Fluoranthène	36	2	5.6%	0.006	0.04

Sur l'ensemble des aquifères calcaires, seules 5 stations présentent une détection aux HAP. Les différents composes ont des teneurs peu importantes. La somme des HAP atteint cependant 0,25 µg/l au niveau de la station de MONT-DEVANT-SASSEY (01116X0098) dans les calcaires oxfordiens du bassin parisien.

3.4.3 Organo-halogénés volatils (OHV)

Les résultats portant sur les OHV sont regroupes dans le tableau suivant

And the second s	The property of the property of the contract of the property of the contract o					
	Carlos Ca	Many and a selection of the second	a man a visit a man have in			Like to
Calcaires oxfordiens	Tétrachloréthène	92	6	6.5%		1.1
du bassin parisien						
Calcaires du Dogger	Chloroforme	205	4	2.0%	0.457	27
du bassin parisien	Tétrachloréthène	205	. 6	2.9%	0.068	2.3
· ·	Trichloréthane-1,1,1	204	1	0.5%	0.051	0.2
Calcaires du Muschelkalk	Chloroforme	29	3	10.3%	0.065	1.24
de Lorraine	Tétrachl.Carbone	29	2	6.9%	0.014	0.23
	Tétrachloréthène	29	1	3.4%	0.008	0.07
	Trichloréthylène	29	3	10.3%	0.079	1.78

Les réservoirs calcaires ne semblent pas contaminés par les OHV. Cependant, au niveau de 2 stations la valeur maximale de la somme des OHV a été supérieure à 10 µg/l:

Calcaires du Dogger du B.P. à COLOMBEY-LES-BELLES (02672X0035) : **27**,**1**µ**g**/l (dont 27 µ**g**/l de chloroforme).

Calcaires du Dogger du B.P. à REMILLY-LES-POTHEES (00683X0023) : 15,1 µg/l (dont 14,1 µg/l de chloroforme).

3.5 Matières organiques oxydables

Les principaux résultats sont présentés dans le tableau ci-dessous :

				i neg kara	A. A.	
Calcaires du Tithonien du Bassin parisien	COD	6	5	83,3%	1,1	2,7
	DCO	6	6	100,0%	3,6	5
	Oxydabllité au KMn04 à					
	chaud	6	1	16,7%	5	1,78
Calcaires oxfordiens du bassin parisien	COD	92	91	98,9%	1	4,5
·	DCO	92	63	68,5%	3,3	23
	Oxydabilité au KMn04 à			,	•	
	chaud	92	66	71,7%	0,9	4
Calcaires du Dogger du Bassin parisien	COD	204	176	87.3%	0,7	5,1
	DCO	204	151	74,0%	3,9	22
	Oxydabilité au KMn04 à					
	chaud	204	84	41,2%	0,6	6,1
Calcaires du Muschelkalk de lorraine	COD	29	29	100,0%	1	1,9
	DCO	29	9	31, 0%	3,3	8
	Oxydabilité au KMn04 à					
	chaud	29	29	100,0%	0,4	1,3

Les valeurs maximales obtenues pour le carbone organique dissous ne sont pas importantes et ne dépassent pas 6 mg/l.

En ce qui concerne l'oxydabilité au permanganate de potassium en milieu acide et chaud, seule 1 station dans les calcaires du Dogger à YONCQ (00878X0012) a dépassé une fois les 5 mg/l O_2 qui constituent la concentration maximale admissible de la réglementation française sur les eaux destinées à la consommation humaine. La pollution par les matières organiques oxydables dans les réservoirs calcaires du bassin est donc mineure.

3.6 Minéralisation et salinité

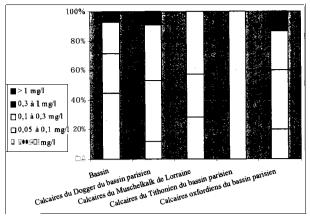
L'ensemble des résultats relatifs à la minéralisation et à la salinité se trouve en annexe 7 où ils sont classés par système aquifere.

En ce qui concerne la conductivité, 96,5 % des stations des réservoirs calcaires dépassent 400 μ S/cm qui est la valeur guide européenne, cependant aucune ne dépasse la valeur indicative de 2500 μ S/cm.

Pour le calcium, 3 stations possèdent des teneurs supérieures à 160 mg/l: Calcaires du Muschelkalk de Lorraine à FENETRANGE (01967X0001): 194,5 mg/l (les 4 mesures effectuées sont supérieures à 160 mg/l). Calcaires du Dogger du B.P. à GOURAINCOURT (01363X0007): 165 mg/l. Calcaires du Dogger du B.P. à MAIRY-MAINVILLE (01372X0064):163 mg/l.

Une seule station présente des teneurs en sulfates supérieures à la limite de qualité européenne pour l'eau potable 250mg/l:

Calcaires du Muschelkalk de Lorraine à FENETRANGE (01967X0001) : 409 mg/l (les 4 mesures effectuées sont supérieures à 378 mg/l).


3.7 Micropolluants minéraux

L' ensemble des résultats relatifs aux micropolluants minéraux se trouve en annexe où ils sont classes par système aquifère.

Dans la directive européenne, la limite de qualité pour l'aluminium est fixée à 200 µg/l. Une seule station à LAVALLEE (01918X0020) dans les calcaires Tithoniens du B.P. dépasse cette limite avec 244 µg/l.

Pour le bore, le seuil OMS de 300 μg/l est dépassé par 5 stations de mesure : Calcaires du Dogger du B.P. à NOYERS-PONT-MAUGIS (00873X0018) : 818 μg/l. Calcaires du Dogger du B.P. à YONCQ (00878X0012) : 623 μg/l. Calcaires oxfordiens du B.P. à TANNAY (00876X001 1) : 606 μg/l. Calcaires du Dogger sous couverture à FRANCHEVILLE (02292X0044) : 400 μg/l. Calcaires oxfordiens du B.P. à PREZ-SOUS-LAFAUCHE (03025X0032) : 342 μg/l.

La répartition des stations pour le bore dans les aquifères calcaires est la suivante :

Les aquiferes du Dogger et de l'oxfordien sont les plus touches par cette pollution.

En ce qui le cadmium, seule la station de MANDEREN (01144X0019) dans les calcaires du Muschelkalk de Lorraine atteint le seuil OMS de 3 μ g/l.

Pour le plomb, seule la station de FRANCHEVILLE (02292X0044) dans les calcaires du Dogger sous couverture atteint le seuil OMS de 10 µg/l.

Le sélénium présente une détection supérieure à 10 μ g/l (seuil OMS) au niveau de 7 stations. La teneur la plus forte de 54,7 μ g/l est relevée à BRABANT-SUR-MEUSE (01354X0069) dans les calcaires oxfordiens du bassin parisien.

Pour les cyanures libres, seules 2 stations présentent des résultats positifs dans l'ensemble du bassin :

Calcaires oxfordiens du B.P. à PREZ-SOUS-LAFAUCHE (03025X0032) : 10 μ g/l. Buttes-témoin du calcaire du Dogger à FAUX (01945X0052) : 20 μ g/l.

3.8 Synthèse

Dans les réservoirs calcaires, la répartition des familles chimiques les plus déclassantes est la suivante (d'après l'étude effectuée à l'aide du SEQ Eaux Souterraines version 0) :

Pesticides 50 %

Particules en suspension 22 %

Nitrates 19 %

Micropolluants organiques (hors pesticides) 4 %

Composés azotés 3 %

Matières organiques oxydables 2 %

4 Réservoirs gréseux

Les aquiferes concernes sont les suivants : Grés du Lias inférieur d'Hettange-Luxembourg (5 stations de mesure) Grès du Trias inférieur sous couverture (18 stations de mesure) Les autres grés du Trias inférieur de Lorraine (23 stations de mesure)

4.1 Pesticides

Parmi l'ensemble des pesticides, seules des triazines ont été détectées. Les principaux résultats concernant ces paramètres sont représentés dans le tableau suivant :

Grès du Lias inférieur	Atrazine	9	1	11.1%	0.018	0.04
d'Hettange-Luxembourg	Déséthylatrazine	9	4	44.4%	0.044	0.09
Grès du Trias inférieur	Atrazine	37	1	2.7%	0.010	0.028
sous couverture	Terbuthylazine	37	1	2.7%	0.015	0.208
Grès du Trias inférieur	Atrazine	69	1	1.4%	0.015	0.34

L' atrazine n' est détectée qu' au niveau de 3 stations et une seule dépass $0,1\,\mu g/l$, la limite de potabilité, à SAINT-LOUIS (02331X0007) dans les grés du Trias inférieur, avec une teneur de $0,34\,\mu g/l$.

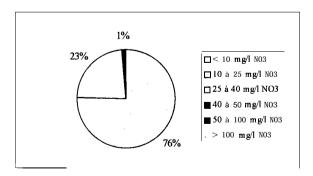
La déséthylatrazine est seulement détectée au niveau de 3 stations et aucune ne dépasse le seuil de potabilité.

La terbuthylazine est détectée au niveau de la station de SARREINSMING (01664X0007) dans les grés du Trias inférieur sous couverture avec une teneur de 0,208 µg/l donc supérieure à la limite de potabilité. Cette valeur montre que bien que sous couverture d'environ 25 m de marnes bariolées, des infiltrations peuvent exister. Ceci restera cependant à confirmer (1 mesure par an sur les GRI captifs)

4.2 Particules en suspension

Les principaux résultats sont présentés dans le tableau suivant :

	The second secon	Separation of the second of the	The second second second	and the second s	ing name (6.6)	40°
Grès du Lias inférieur	Turbidité Néphélométrique	9	9	100.0%	1.100	4.9
d'Hettange-Luxembourg	Manganèse	9	6	66.7%	0.005	0.016
	Fer	9	4	44.4%	0.053	0.256
Grès du Trias inférieur	Turbidité Néphélomètrique	37	20	54.1%	1.110	6.9
sous couverture	Manganèse	19	15	78.9%	0.030	0.12
	Fer	19	10	52.6%	0.191	1.015
Grès du Trias inférieur	Turbidité Néphélométrique	69	39	56.5%	0.317	3
	Manganèse	53	34	64.2%	0.041	0.348
	Fer	53	22	41.5%	0.028	0.544


Dans les réservoirs gréseux, prés de 20 % des stations (c' est-à-dire 9 stations) présentent au moins une détection de la turbidité néphélométrique supérieure à la concentration maximale admissible de la réglementation française sur les eaux destinées à la consommation humaine (2 NTU). Cependant les valeurs enregistrées ne dépassent pas 6,9 NTU.

4.3 Nitrates et composés azotés

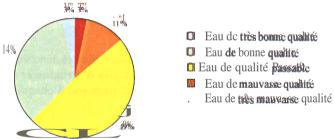
Les principaux résultats sont résumés dans le tableau suivant :

	A COLUMN TO SERVICE STATE OF THE SERVICE STATE OF T		- 1 m	16 T	i nend		unen erre 15. 12.A. 1966			- M		
Grès du Lias inférieur d'Hettange-												
	Ammonium Nitrates	mg/l NH4 mg/l NO3	9,0 9.0		0.1 13.3	0,3 20,8	7.1	<0.02 5.9	<0,02 7,6	0,0 14,5	19,2	0,1 20,7
	Azote Kjeldahl Nitrites	mg/l N mg/l NO2	5.0 5.0		0.2 0,0		0,1 0,0	0,1 <0,03	0,1 <0,03	0,1 CO.03	0,2 <0,03	0.3 <0,03
Grès du Trias inférieur (GTI) 210 sauf 210x												
	Ammonium Nitrates	mg /l NH4 mg/ l NO3	69.0 69 ,0		0.0 5 ,6		8,2	CO.03 0 ,7	<0,03 2,5	SO.03 4 ,1	0,0 5,4	0,1 6,7
	Azote Kjeldahl Nitrites	mg/IN mg/INO2	23.0 23.					<0,5 <0,02			0,7 <0,02	0,8 CO.02
Grès du Trias inférieur sous couverture (GTI) 210x												
18 stations	Ammonium Nitrates	mg/INH4 mg/INO3	37,0 37.0		0.0 1.9	-,-		CO.01 <0,1	0,0 0,1	0,4	0,0 1,4	0,1 3,1
	Azote Kjeldahl Nitrites	mg/l N mg/l NO2	16.0 16		0.6 0.0	3.6		0.1 <0,001	0,2 <0,001	0,6 <0,001_	0,9 0,0	1,6 0,0

La répartition des stations de mesure en fonction de leur concentration maximale est la suivante :

Seule 1 station dépasse le niveau guide européen 25 mg/l NO₃, la station d'APACH (01144X0004) dans les grés du Trias inférieur où les 3 mesures effectuées sont supérieures à ce seuil, la concentration maximale détectée est de 48,6 mg/l NO₃.

Synthèse

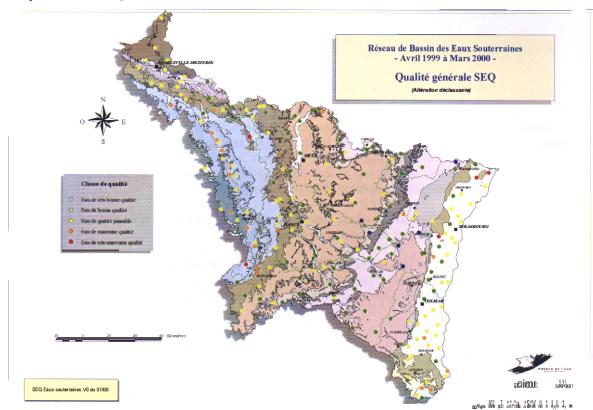

Depuis avril 99. le **réseau** de Bassin des Eaux Souterraines **permet** d'évaluer la qualité des eaux souterraines grâce à 185 stations **prédevées** 6 fois par **an** pour les **aquifères karstiques** ou fissurés, 3 à 2 fois **par an** pour les aquifères à perméabilité **d'interstices**, et l fois par an pour les **aquifères** captifs. En tenant ainsi compte de l'inertie **des** eaux souterraines, **tout** en ayant une continuité de mesures, on **peut** espérer appréhender de manière scientifiquement correcte leur qualité **réclic** et leur évolution

Nous précisons **cependant** que ce réseau surveille la qualité de l'eau **blute**, et ne **présage** en rien de l'eau **distribuée** publiquement qui **peut** subir des traitements, dilutions etc

Le rapport technique "Réseaux de Bassin des Eaux Souterraines rapport d'analyse technique avril **99-mars** 00" constitue la première exploitation de ce **réseau**. Il bénéficie d'un apport particulièrement riche en données, par l'analyse de nombreux paramètres en **avril 999** qui ne devraient **être analysés ensuite** que tous les 5 ans

Les résultats :

D'après le Système d'évaluation de la qualité (outil **InterAgences**), la répartition des stations en classes de qualité **est** la suivante



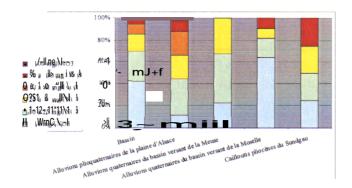
Le constat doit donc **être** fait que les stations du RBES ne sont qu'à 37 % seulement considérées comme ayant une bonne ou une très bonne qualité. La moitié d'entre elles fournissent une eau de qualité passable Les principales causes de ce déclassement en qualité passable sont :

On trouve certes des altérations **considérées** comme naturelles mais on observe principalement que les pesticides sont la première cause de dégradation **anthropique** de la ressource en eau, avant les nitrates et les micropolluants **organiques**.

Cette qualité générale reflète en fait deux approches combinées (Voir conclusions page 44) : **l'** approche "aptitude à la production d'eau potable", et **l'** approche "état patrimonial" qui tient compte de l'inertie temporelle des **aquifères** et de sa qualité initiale « naturelle »

On retiendra que 3 aquifères sont particulièrement dégradés : les calcaires du Dogger et de l'Oxfordien, ainsi que la nappe d'Alsace.

De manière générale, les aquifères calcaires sont fissurés, voire karstifiés et donc vulnérables pal- des circulations d'eau rapides. Le principal problème est en fait constitué par les pics d'atrazine et de déséthylatrazine. Plus de 60 % des stations détectent ainsi une triazine (détails page 28), mais pas à chaque prélèvement, ce qui montre deux choses :


- Le caractère généralisé de la pollution liée à des apports diffus
- La variabilité liée au fonctionnement rapide de l'aquifère, **réagissant** rapidement **aux précipitations** (confirmé par les déclassements **fréquents par** Ics particules en suspension dans ces aquifères).

Cette présence de pesticides est à relier à la présence de nitrates : 55% des stations dépassent la valeur guide de 25 mg/l., et on rethouve également dans ce type d'aquifère des urces substituées (15% des stations dépassent la norme en Isoproturon).

Par contre les polychlorobiphényles (PCB), organochlorés, hydrocarbures aromatiques polycycliques (HAP), organochlorés volatils (OHV), n'ont été que peu, ou pas du tout retionnés.

En ce qui çonceme <u>les aquitères alluviaux</u>, la nappe d'Alsace (ainsi que le Sundgau) est le principal problème, avec plus de 60 % des mesures positives en atrazine et en déséthylatrazine, mais les stations captant les alluvions de la Meuse sont également fortement contaminées. Si du point de vue santé publique, les concentrations trouvées sont encore largement compatibles avec la production d'eau potable (voir cartes en conclusion), la présence de pesticides à forte rémanence comme les triazines dans l'eau dégrade fortement l'état patrimonial de la flappe.

Les nitrates sont également à un niveau préoccupant suit la nappe d'Alsace avec une moyenne à 29.6 mg/l et une médiane à 24.X mg/l. Ces valeurs folies sont d'ailleurs communes aux aquifères alluviaux :

De plus, contrairement au reste du bassin, ces **aquifères** sont particulièrement touchés par les **organo**-halogénés volatils (OHV : voir détail page 22) avec des fréquences de détection pouvant atteindre 40% sur la nappe **d'Alsace en** trichloroéthylène

Enfin, les pollutions connues de la nappe d'Alsace par les chlorures sont retrouvées, et on signalera des valeurs assez élevées en Bore en Alsace et sur les alluvions de la Moselle. ainsi que des **HAP** ponctuellement détectés **sur** la nappe **d'Alsace**.

On retrouve également sur quelques points des **aquifères** alluviaux (voir détails **page** 20 ct suivantes) du **linuron** du diuron, des **hexachlorobemères**s et du **métolachlore**.

<u>Les aauifères préseux</u> bénéficient en Rhin-Meuse de conditions naturelles favorables (couverture ou environnement naturel), ce qui se ressent largement sur la qualité des **aquifères**. On signalera cependant la présence occasionnelle de **déséthylatrazine**, **tétrachloroæthylène**, sur les grès **d'Hettange-Luxemboung** et de chloroforme et **téhadillorure** de carbone sur les grès du Trias Inférieur.

Enfin, des micropolluants minéraux généralement d'origine naturelle sont présents dans les grès du Trias sous couverture : Cadmium, Arsenic, Aluminium, Sélénium.