Table des matières

Avant Propos	
Sommaire	
Introduction	
mirodaction	••••••
Chapitre 1 : Pollution de la nappe par un solvant chloré : problématic	me e
quantification	11
1.1. Problématique	11
1.1.1. Ampleur de la menace pour la ressource en eau	12
1.1.2. Réglementation et enjeux économiques	1.
1.2. Devenir des solvants chlorés dans le milieu souterrain	14
1.2.1. Propriétés physico-chimiques de trois solvants chlorés	14
1.2.2. Migration dans l'aquifère	12
1.2.3. Transferts de masse entre phases	1
1.2.3.1. Transfert de masse entre les phases organique et aqueuse	18
1.2.3.2. Transfert de masse entre les phases organique et aqueuse	18
1.2.3.3. Transfert de masse entre les phases organique et gazeuse	20
1.2.3.4. Transfert de masse entre les phases aqueuse et gazeuse	20
1.2.3.4. Transfert de masse avec la matrice solide	21
1.3.1. Echelles d'observation	22
1.3.2. Suivi et description de la pollution	22
1.3.2.1. Mesures ponctuelles des teneurs en polluant	23
1.3.2.1. 1. Teneurs en polluant dans un échantillon de sol.	23
1.3.2.1.2. Teneurs en politiant dans un échantillon de soi	23
1.3.2.1.3. Teneurs en politiant dans un échantillon d'eau	24
1.3.2.1.5. Teneur's en pontuant dans un echantition à eau	23
1.3.2.2. Méthodes globales	28
1.3.3.1. Nature des matériaux constituant le milieu souterrain	29
1.3.3.2. Structure géologique de l'aquifère	29
1 3 3 3 Effets d'échelle et influence des hétére génétée	30
1.3.3.3. Effets d'échelle et influence des hétérogénéités	32
1.4.1 Transport polymbosique	32
1.4.1. Transport polyphasique	32
1.4.1.1. Advection: généralisation de la loi de Darcy	33
1.4.1.2. Dispersion hydrodynamique	34
1.4.1.3. Relations constitutives	35
nhases	isieurs
phases	
Chapitre 2 : Construction du modèle hydrodynamique	43
2.1. Paramétrisation du modèle	45
2.1. Paramétrisation du modèle	15
2.1.2. Conditions aux limites du système	47
2.1.2.1. Les apports d'eau	49
2.1.2.1.1. La recharge de la nappe par infiltration des eaux de pluie	48

3.2.1.3.3. Distribution des conductivités hydrauliques	97
3.2.1.3.4. Influence du niveau des rivières	100
3.2.1.3.5. Emplacement de la source	100
3.2.1.4. Conclusion	102
3.2.2. Incidence de la mise en place du dispositif de dépollution	102
3.2.2.1. Efficacité du traitement	102
3.2.2.2. Poursuite du traitement	105
3.2.2.3. Conclusion.	107
3.3. Transport des traces dissoutes en régime d'écoulement transitoire	107
3.3.1. Comparaison aux résultats du régime d'écoulement permanent	108
3.3.2. Comparaison aux concentrations relevées au voisinage du site pollué	110
3.3.3. Influence de quelques paramètres de transport	111
3.3.3.1. Choix du pas de temps de calcul	111
3.3.3.2. Durée des périodes d'écoulement	113
3.3.3.3. Source à concentration variable	114
3.3.3.4. Conclusion.	
3.3.4. Devenir du panache des traces dissoutes	118
3.3.5. Conclusion	110
3.4. Conclusion	120
3.4. Conclusion	120
Chapitre 4 : Approche affinée du devenir de la pollution au moyen	d'un code
multiphasique	121
4.1. Transfert du modèle hydrodynamique de l'aquifère vers SIMUSCOPP	123
4.1.1 Construction du modèle hydrodynamique de l'aquitele vels Sivioscori	123
4.1.1. Construction du modele hydrodynamique	123
4.1.1.1. Discrétisation spatiale du domaine	124
4.1.1.2. Propriétés hydrodynamiques du milieu poreux	125
4.1.1.3. Propriétés pétrochimiques de la phase DNAPL	123
4.1.1.4. Conditions aux limites	120
4.1.2. Comparaison de l'écoulement	127
4.1.3. Comparaison du transport des traces dissoutes	128
4.1.4. Conclusion	130
4.2. Affinement de la description de l'aquifère	131
4.2.1. Investigations sur le site d'étude	131
4.2.1.1. Rappel historique.	131
4.2.1.2. Profils de vitesses mesurés dans l'aquifère	132
4.2.1.3. Profils de concentrations	135
4.2.2. Discrétisation du domaine « extrait 2 »	139
4.2.3. Propriétés hydrodynamiques de l'aquifère	139
4.2.3.1. Distribution des conductivités hydrauliques sur le maillage « site »	140
4.2.3.2. Distribution des perméabilités et localisation du polluant sur	le maillage
« source »	
4.2.3.2.1. Méthodologie	143
4.2.3.2.2. Résultats de l'étude analytique	145
4.2.3.3. Distribution des propriétés physiques du sol	148
4.2.4. Conditions aux limites du modèle	149
4.2.5. Ecoulement de la nappe calculé par SIMUSCOPP	150
4.3. Description de la source	151
4.3.1. Essais préliminaires	151
4 3 1 1 Superficie et profondeur d'infiltration du polluant	152

2.1.2.1.2. Les flux entrants	50
2.1.2.2. Les sorties d'eau	50
2.1.2.2.1. La limite orientale du domaine	51
2.1.2.2.2. Les débits d'exploitation de la nappe alluviale	5
2.1.2.2.3. Les échanges nappe – drains	. 5
2.1.2.3. Les échanges nappe – rivières	50
2.1.3. Données hydrodynamiques	53
2.1.3.1. La piézométrie sur le domaine	53
2.1.3.2. Les paramètres hydrauliques	55
2.2. Modélisation du régime d'écoulement permanent	57
2.2.1. Initialisation du modèle	57
2.2.2. Résultats du calage	58
2.2.2.1. Description du champ de perméabilités	58
2.2.2.2. Bilan en eau	61
2.2.3. Sensibilité du modèle	61
2.2.4. Influence des conditions aux limites sur la piézométrie	63
2.2.4.1. Influence de la recharge et des flux entrants	62
2.2.4.2. Influence du niveau des rivières	63
2.2.4.3. Conclusion	6/
2.3. Modélisation du régime d'écoulement transitoire	6/
2.3.1. Paramétrisation du modèle	
2.3.1.1. Coefficient d'emmagasinement	6/
2.3.1.2. Conditions aux limites	65
2.3.2. Ajustement de la distribution de la recharge	66
2.3.2.1. Hypothèse 1 : combinaison linéaire de plusieurs évènements pluvieux	00
2.3.2.2. Hypothèse 2 : réaction de la nappe différée par rapport aux précipitations	70
2.3.2.3. Hypothèse 3 : recharge moyenne annuelle sur le piémont	7/
2.3.2.4. Conclusion	75
2.3.3. Sensibilité des paramètres	75
2.3.3.1. Apports latéraux	75
2.3.3.2. Ruissellement	70
2.3.3.3. Coefficient d'emmagasinement	01
2.4 Conclusion	01
2.4. Conclusion	02
Chapitre 3 : Simulation numérique monophasique du transport	83
3.1. Paramétrisation du modèle	85
3.1.1. Choix du code de calcul.	85
3.1.2. Propriétés du milieu poreux	86
3.1.2.1. Porosité du milieu	86
3.1.2.2. Dispersivité du milieu poreux	87
3.1.2.3. Transferts de masse et réactions physico-chimiques	87
3.1.3. Localisation et description initiales de la source	88
3.2. Transport des traces dissoutes en régime d'écoulement permanent	90
3.2.1. Résultats de l'étude préliminaire	90
3.2.1.1. Concentrations en PCE calculées dans les piézomètres	90
3.2.1.2. Masse de polluant dissoute dans la nappe depuis l'apparition de la pollution	90
3.2.1.3. Influence de paramètres de transport sur le développement du panache	03
3.2.1.3.1. Dispersion	03
3.2.1.3.2. Dégradation	

4.3.1.2. Etendue de la source et volume mis en place	153
4.3.2. Calage de la source	150
4.3.2.1. Localisation de la source affinée dans le plan horizontal	150
4.3.2.2. Profils des concentrations en PCE calculés	165
4.3.2.3. Panache des traces dissoutes de PCE	170
4.3.3. Comparaison des résultats obtenus pour les trois schématisations de l'a	guifère 171
4.3.4. Conclusion	172
4.4. Etude du dispositif de dépollution	173
4.4.1. Définition du problème posé	173
4.4.2. Effet de la mise en fonctionnement du puits F4	174
4.4.3. Fonctionnement des puits de fixation	176
4.4.4. Influence du régime d'écoulement introduit pour la projection	176
4.4.5. Conclusion	170
4.5. Conclusion	179
Conclusion générale et perspectives	183
Références bibliographiques	187
Liste des figures	199
Liste des Tableaux	203
Liste des symboles	205
Liste des abréviations	200
Table des matières	209
Annexes	215
Annexe 1 : Glossaire des notions de base des écoulements en milieu p	oreux .217
Annexe 2 : Carte des précipitations brutes sur le département	223
Annexe 3: Distribution des champs de perméabilités calées e	en régime
permanent	n regime
Annexe 4 : Technique de forage au marteau fond de trou	225
mile 4. Teeninque de forage au marteau fond de trou	227

194.2.3.2. Distribution des permeabilisés et localisation dus pollenes sant de maillage

Annexes Classaire des notions de les

Annexe 1 : Glossaire des notions de base des écoulements en milieu poreux

Dans cette annexe sont rappelées les notions de base non présentées dans le coeur du mémoire (Castany, 1982 ; de Marsily, 1996).

Annexe 2 : Carte des précipitations brutes sur le département La carte présentée a été établie en 2001

Annexe 3 : Distribution des champs de perméabilités calées en régime permanent

Annexe 4 : Technique de forage au marteau fond de trou

vitence recontre de Reynolds en miliou constantificação a una tirrite estuda empe 1 es 104. En

Introduction

Les eaux souterraines représentent notre première ressource en eau douce mais leur qualité est aujourd'hui menacée par une activité humaine non raisonnée. Pour faire face à ce problème, des politiques de gestion des énergies sont développées pour protéger notre patrimoine environnemental mais, d'ores et déjà dans les pays industrialisés, les ressources en eaux souterraines sont mises en péril notamment par l'emploi intensif de produits nitratés et phytosanitaires et l'exploitation parfois non contrôlée des hydrocarbures, de leurs dérivés et des métaux lourds. La fragilité de cette ressource réside dans sa non accessibilité. En effet, alors que la pollution d'un cours d'eau est visible quasiment immédiatement, celle de la nappe n'est souvent détectée que des décennies après son apparition du fait de la lenteur de la progression des substances dans le sol. Il est alors parfois difficile de déterminer avec exactitude son origine car les moyens d'investigation sont coûteux et les informations qui en résultent restent limitées. Par ailleurs, suivant leurs propriétés physico-chimiques, les substances polluantes peuvent rester piégées dans le sol durant une très longue durée. En France, 3783 sites pollués par des hydrocarbures et leurs dérivés ou des métaux lourds sont recensés. Environ 12% de ces cas ont pour origine des solvants halogénés familles de constituants chimiques à laquelle appartiennent les solvants chlorés. En Alsace, la proportion de ces sites pollués par cette catégorie de substances (19%) est supérieure à la moyenne nationale (BASOL, 2004).

Notre étude a porté sur une pollution au perchloroéthylène (PCE) située au pied des collines vosgiennes. La présence de PCE a été détectée dans la nappe dans les années 90 mais l'enquête menée par BURGEAP a montré qu'il était probable que celle-ci soit apparue entre 1970 et 1980. Son origine est méconnue mais plusieurs travaux ont été réalisés afin de limiter la progression des traces dissoutes à l'aval du site. Dans le but de comprendre le devenir de ce solvant chloré et de ses dérivés, un partenariat a été conclu entre l'industriel considéré iuridiquement comme responsable, le bureau d'étude BURGEAP chargé de ce dossier et le groupe d'animation de la recherche IFARE (Institut Franco-Allemand de Recherche sur l'Environnement) de l'Institut de Mécanique des Fluides et des Solides de Strasbourg. L'IMFS-IFARE s'intéresse, depuis quelques années, au comportement et au devenir de solvants chlorés dans les milieux poreux et dispose, pour ses travaux, d'une plate-forme expérimentale de grande dimension. Ce projet entre dans le cadre d'une convention de recherche entre l'IMFS-IFARE et l'Agence de l'Eau Rhin-Meuse et a bénéficié d'une bourse de thèse financée par la Région Alsace. Durant ces travaux, des partenariats scientifiques avec l'équipe VEGAS (*) de l'Institut für Wasserbau de Stuttgart et Anjou Recherche ont permis d'affiner notre connaissance du milieu souterrain et de la pollution par la conduite de plusieurs campagnes de mesures entre décembre 1999 et juin 2003.

La situation de cette pollution est particulière car son origine a été localisée au pied des collines vosgiennes mais la menace peut s'étendre dans la plaine alsacienne. Or sur ce domaine, la nature géologique de l'aquifère est très différente entre le piémont et la plaine : dans le piémont, le milieu poreux apparaît très hétérogène et est constitué d'une alternance de couches de perméabilités très différentes alors qu'il semble plus homogène et plus perméable en plaine. Comment alors caractériser ces hétérogénéités tout en conservant une

^(*) Versuchseinrichtung zur Grundwasser- und Altlastensanierung

schématisation simple de l'aquifère sur le domaine d'étude afin de décrire l'écoulement global de la nappe et d'étudier le transport des polluants dissous ?

En outre, le comportement hydrodynamique de la nappe est sensiblement différent entre la plaine et le piémont et en fonction des fluctuations saisonnières des conditions hydrologiques. Comment alors reproduire les battements du niveau piézométrique? Et ont-ils une incidence sur l'évolution des concentrations des traces dissoutes de polluants relevées sur le domaine? Par ailleurs, le comportement des polluants est fortement conditionné par les caractéristiques physico-chimiques du milieu poreux pour lesquelles nous manquons d'information. Comment alors reproduire le panache des traces dissoutes de solvants chlorés tels qu'il est perçu actuellement? Comment évaluer la fiabilité de notre étude et estimer l'évolution de cette pollution?

Enfin, nos connaissances sur la source de solvants chlorés sont relativement restreintes : nous disposons de témoignages plus ou moins précis, de mesures ponctuelles de concentrations dont l'historique reste limité et des études réalisées précédemment par BURGEAP dont les travaux ont abouti à la mise en place d'un dispositif de dépollution qui se révèle efficace. Comment donc affiner notre perception de la source pour optimiser ce dispositif?

L'approche adoptée est présentée en quatre chapitres. Dans le premier chapitre est abordée la problématique générale des solvants chlorés à travers quelques indications statistiques quant à la présence de ces substances dans les eaux souterraines et leurs propriétés dans le milieu poreux. Les difficultés à appréhender et à suivre l'étendue d'une pollution sont ici mises en relief en proposant quelques techniques d'investigation employées sur site et au laboratoire. Enfin sont présentées des approches numériques développées comme outils d'analyse du devenir de ces substances dans le sol

Le deuxième chapitre expose la méthodologie adoptée pour bâtir un modèle de l'aquifère avec le code numérique hydrogéologique MODFLOW: fiabilité des données disponibles et hypothèses de construction du modèle afin de décrire l'écoulement de la nappe en régimes permanent et transitoire. Une analyse de sensibilité concernant les paramètres calés pour les deux régimes d'écoulement est présentée dans le but de discuter de la valeur du modèle obtenu.

Dans le troisième chapitre est abordé l'étude à grande échelle de la pollution des traces dissoutes. Pour ce faire, un modèle de transport a été construit avec le code de calcul monophasique MT3DMS. Puis, l'évolution probable de la pollution à courte durée dans un premier temps et pour une perspective de 30 ans environ ont été étudiées ainsi que la poursuite du traitement sur le site. La pollution a été décrite pour un régime d'écoulement tantôt permanent, tantôt transitoire à partir des champs de vitesses calculés dans le chapitre précédent.

Enfin, dans le dernier chapitre, nous nous sommes intéressés à la description plus locale de la pollution afin d'affiner la perception de la source résiduelle de polluant. Dans un premier temps, à l'aide d'une méthode analytique, la description du milieu poreux a été affinée et une distribution possible des quantités résiduelles de polluant a été déterminée. Puis une description plus détaillée de la source a été obtenue en utilisant un modèle multiphasique, SIMUSCOPP, permettant de considérer la dissolution du polluant dans la nappe. Cette étude s'est appuyée sur les profils de vitesses et de concentrations établis lors des campagnes de 1999 à 2003.