

- REGION CHAMPAGNE-ARDENNE-

Réseaux de suivi de la qualité des eaux superficielles

En 2001, les modalités de réalisation du suivi de la qualité des eaux superficielles en Champagne-Ardenne ne présentent pas de modification par rapport à celles prévues lors de la mise en œ uvre initiale du programme quinquenal, 1997-2001, cofmancé par le Ministère de l'Aménagement du Territoire et de l'Environnement (MATE) et les agences de l'eau..

L'ensemble des 80 points inscrits en Champagne-Ardenne au titre du Réseau National de Bassin (RNB) sous maitrîse d'ouvrage du MATE, ou du réseau complémentaire Agence (RCA) au sein du bassin Seine-Normandie ont été étudiés à fiéquence mensuelle, exceptionnellement bimensuelle pour 3 points du bassin Rhin Meuse.

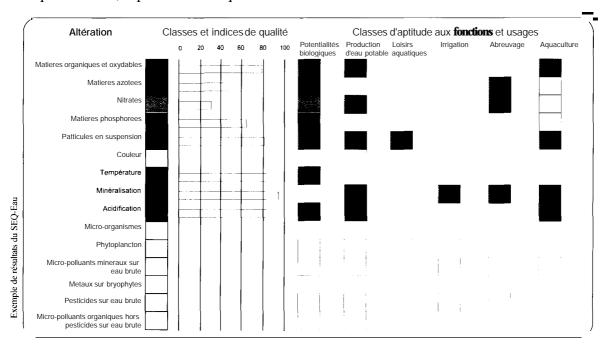
Les 10 stations de suivi mises en œ uvre par le conseil général de Haute Marne en 1997 avec une fréquence trimestrielle ont été étudiées à fréquence bimestrielle au cours de cette année 2001.

L'ensemble des données sur les macro polluants, recueillies sur ces 90 points par la DIREN Champagne-Ardenne en tant que gestionnaire, Co-gestionnaire ou prestataire de service a servi à établir cette synthèse.

Pour chaque station, on pourra se reporter aux annuaires départementaux publiés parallèlement au présent document ; annuaires qui présentent les valeurs mesurées ainsi qu'une interprétation spécifique sur la base des grilles du Système d'Evaluation de la Qualité de l'Eau (SEQ'Eau) et les données biologiques issues de l'Indice Biologique Global Normalisé (IBGN) voire IBGA lorsque ceux-ci sont applicables.

Cette synthèse comprend les historiques sur les 5 dernières années pour les différentes altérations « macropolluants »

Le Système d'Évaluation de la Qual'té de l'Eau (SEQ-Eau) version 1


Le Système d'Évaluation de la Qualité de l'Eau (SEQ-Eau) a été lancé par le Mi istère de l'Aménagement du Territoire et de l'Environnement et les Agences de l'Eau à partir de 1996. Il constitue le volet «Eau» d'un système global d'évaluation de la qualité des cours d'eau qui comprend également deux autres volets : qualité du milieu physique (SEQ-Physique) et qualité biologique (SEQ-Bio). Depuis juillet 1999, le SEQ-Eau doit être mis en œuvre au niveau national. Le logiciel dédié à son application est disponible au téléchargement via internet (ftp://seq-eau:rnde@ww.rnde.tm.fi).

A la base du système, une volonté de synthèse

Le SEQ-Eau est fondé sur la notion d'altérations, qui regroupent des paramètres physico-chimiques de même nature ou de même effet en une quinzaine de « familles » permettant de décrire les grands types de dégradation de la qualité de l'eau : Matières Organiques et Oxydables, Matières azotées, Nitrates, Minéralisation ...

Ces altérations sont susceptibles de perturber la fonction biologique de l'eau (permettre la vie aquatique si l'habitat est satisfaisant) et ses usages (production d'eau potable, loisirs et sports aquatiques ...). C'est donc sur ces bases qu'ont été définies les grilles de seuils par altération.

Au cœur du SEQ-Eau, le calcul des classes de qualité tient compte de l'importance relative des paramètres et impose des contraintes liées à la représentativité des données (fréquences et époques de mesures). Il fournit, pour chaque altération, la plus mauvaise qualité observée sur au moins 90% des mesures.

Les modes d'évaluation de la qualité de l'eau

Aptitude de l'eau à sa fonction biologique et aux usages :

Cette approche, principalement destinée aux décideurs et usagers, permet de juger directement de l'aptitude de l'eau à satisfaire sa fonction biologique et ses usages dans une optique de gestion des ressources.

Qualité de l'eau par altération :

Cette approche est surtout conçue pour identifier précisément les grands types de dégradation de la qualité de l'eau afin de cibler les programmes de lutte contre la pollution. Elle permet en outre de suivre dans le temps l'efficacité des actions mises en œuvre.

CLASSE SEQ'Eau

ALTERATIONS "Macropolluants"

Seuils retenus pour les différents paramètres Caractérisant une altération

Les classes de qualité par paramètres et les indices de qualité par altération

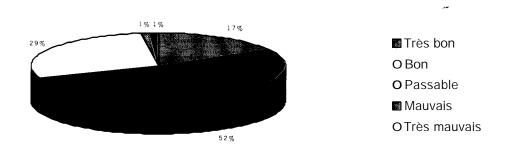
Classe de qualité		Règles de qualification	bleu 80	VOII	jaune 40	orange 20	
Indice de qualité			<i>o</i> u	SIE.	40	20	L
1- Matières organic	ues et ox		•			sa de salabana	· ====================================
Oxygene dissous (mgli) Taux sat O ₇ (%)		Analyse impérative de l'un de ces deuxparamètres (112)	8 90		4 50	30	
DB05 (mgil 02)		Analyse impérative	3		10	25	
DCO (mg/l O_2)		Analyse impérative de l'un de	20	Sec. (6.44)	40	80 /	
$KMnO_4 (mg/I O_2)$		ces trois paramètres (113)	3	5.5	8	10	
COD (mgil C) NH4+ (mg/l-NH4)		Analyse Implrailve de l'un de	5 0,5		10 2,8		-
NKJ (mgil-N)		ces deux paramètres (112)	1	, 2	4	e	
2- Matières azotées	;						
NH_4^+ (mg/l- NH_4)		Analyse Impérative	0,1	0,5	2	5	<u>, </u>
NKJ (mg/l-N)	11910	Analyse optionnelle	1 000	2.50	4	2 4 3 10 sc	
NO ₂ - (mg/l-NO ₂)		Analyse optionnelle	0,03	in company of the co	0,5	T.S	
3- Nitrates		Amal was love frostly a	2	ten til staten er til staten	25	30	
NO3 (mg/l-NO ₃)	,	Analyse impérative	2	/ 78	25	400	
4- Matières phosph Phosphore total (mg1i)	orees	Analyse impérative de l'un de	0,05		0,5	1	
Pnospnore total (mg II) PO ₄ 3 (mg/l-PO ₄)		ces deux paramètres (112)	0,05	0.5	0,5 1	2	
5- Particules en su	spension						
MES (mgil)	-	Analyse impérative de l'un de	5 2	00	30	50	
Turbidite (NTU)		ces trois paramètres (113)		iu 🤼	70 1,3	106	
Transparence (in)			2		1,3	1 3	
6- Couleur			. 91			33	
Couleur (mgll Pt/Co)		Analyse impérative	15	A Victor	100	200	
7- Température							
Température (°C)	***************************************	Analyse impérative	21,5		25	28	
Δ T (°C) (1)		Analyse optionnelle	1,5		2,5		
8- Minéralisation						***	
Conductivite (µS/cm)		Analyse Impérative	2500		3500	490	
Chlorures (mgil)		Analyse optionnelle	62,5	<u> </u>	190		## **
Sulfates (mg/l) Calcium (mgil)	min	Analyse optionnelle Analyse optionnelle	62,5 24		190 12		
Calcium (mgn)	MAX	Analyse optionnelle	160		300	leo'	
Magnesium (mg/l)		Analyse optionnelle	- 4	SEE.	100		5
Sodium (mg/l)		Analyse optionnelle	200		250		
Potassium (mgil) TA, TAC (d°F)	min	Analyse ~ ptio ~ ngle Analyse optionnelle	12		15 3	* * * * * * * * * * * * * * * * * * *	ia Ia
1A, 1AC (U 1)	MAX	Analyse optionnelle	40		75	100-	
Dureté (d°F)	min	Analyse optionnelle	14.19	5.4	4	(2)	
	MAX		50		90	-1925	
9- Acidification							
РH	min	Analyse impérative	6,5		5,5	9,5	
A Luma Im Luma	MAX	Ahtialla	8,2		9,0	10-	
Aluminium (mg/l)	pH<6,5 pH>6,5	Analyse optionnelle	9,005 0,1	W2 7	0,05 0,4	76	
10- Micro-organisn	nes						
Coliformes thermotolerants	(~110 0 ni) (3)	y ive oe i un de	20	A	1000	2000	
Streptocoques fécaux (~11 Coliformes totaux (u/100		ces deux paramètres (1/2) Ana yse optionnelle	20 50	•	250 5000	10000	-n ~
11- Phytoplancton	,	, and Joe obttomicale	•				السيست المتالية المت
Taux de saturation en 0 ₂	(%) (4)	Analyse optionnelle de ces deux paramètres	110	7750 F	150	200	
pH (4)		qui doivent être mesurés simultanément (0 ou 2)	8,0	8.8	9,0	9,5	- 48
$\mathbf{A} \mathbf{O}_2$ (lour-nuit) (mg11 \mathbf{O}_2		Analyse optionnelle	3		9	12	
A pH (lour-nuit) Algues (unité/ml)	M186	Analyse optionnelle Analyse impérative de l'un de	0,3 2500		1,1 50000	1.4 500000	
		ANICHYSE INDUIDUED OF UC I UII UC	2000			****	

⁽¹⁾ Température à l'aval d'un rejet, après déduction de la température à l'amont (2) Le plus mauvais indice de qualité pour ce paramètre est 20 (et non pas 0) (3) Assimilables à Escherichia Coli (4) pH et saturation doivent être pris en compte simultanément

SEQ'EAU MATIERES ORGANIQUES ET OXYDABLES BASSINS RHIN-MEUSE ET RHONE-MEDITERRANEE-CORSE

QUALITE

très bonne bonne passable manyelpe are non Ass.


BASSIN RHIN-MEUSE

Cours d'eau	Station	N° ordre	1997	1998	1999	2000	2001
BASSONCOURT	MEUSE	106500	21;	40	53	学为	57
BREUVANNES	FLAMBART	106550	30	55	62	TYPE	55
BOURG STE MARIE	MEUSE	106575	26	40	53		57
GONCOURT	MEUSE	106600	36	53	51	57	56
REMILLY	MEUSE	■ ■ 5000	43	49	60	56	58
SAPOGNE/MARCHE	MARCHE	115950	60	50	70	63	56
CARIGNAN	CHIERS	116000	30	49	68	59	60
DONCHERY	MEUSE	117000	* 38 }	49	58	58	67
VRIGNE MEUSE	VRIGNE	117400	S 39 1	40	54	47	90
SAUVILLE	BAR	117575	36	46	53	58	53
CHEVEUGES	BAR	117650	(10) (10) (10)	55	51	60	56
LUMES	MEUSE	118000		43	57	49	60
FRANCHEVILLE	VENCE	■■ 8200	45	56	49	59	55
GIRONDEI.LE	SORMONNE	118300	40	40	50	59	49
REMILLY	AUDRY	118350	44	56	58	53	62
HAUDRECY	THIN	118450	43	62	59	67	55
BELVAL	SORMONNE	118500	50	54		55	56
NOUZONVILLE	GOUTELLE	118750	48	54	69	60	50
NOUZONVILLE	MEUSE	119000	1	51	64	49	55
HAULME	SEMOIS	120000	41	56	75	59	59
LAIFOUR	MEUSE	121000	42	42	72	62	64
FUMAY	ALYSE	122200	51	55	66	68	70
MONTIGNYIMEUSE	VIROUIN	122800		50	58	48	63
HAM/MEUSE	MEUSE	123000		46	67	48	56
FROMELENNES	HOUILLE	123500		54	59	53	55
GIVET	MEUSE	124000	45	54	64	58	62

Cours d'eau	Station	N° ordre	1997	1998	1999	2000	2001
APANCE	ENFONVELLE	890	73	70	78	62	64
AMANCE	MAIZIERES	1180	66	68	65	68	72
MANCE	PISSELOUP	1190		66	77	40	52
SALON	COUBLANC	3950	71	68	70	66	68
VINGEANNE	CUSEY	5682	66	82		79	76

MATIEWS ORGANIQUES ET OXYDABLES

Répartition des différentes classes de qualité (sur 90 points)

Bilan général pour la Champagne-Ardenne

Cette année de suivi se caractérise par une augmentation de la classe de qualité « bonne » qui passe de 39 à 52 % au détriment de la classe ((passable » (de 37 à 29 %).

L'étude du tableau présentant l'historique des 5 dernières années ne laisse pas paraître d'évolution nette.

La Champagne humide, à faible concentration urbaiile reste particulièrement peu influencée par ce type de pollution dont la maîtrise, mise en place progressivement, semble porter ses hits.

Les principaux axes hydrauliques : Seine, Marne et Meuse ainsi que l'Aisne en aval des principales agglomérations connaissent toujours une altération assez forte de leurs eaux par les apports en matières organiques et oxydables imputables selon les cas à des apports urbains, agricoles ou industriels.

Les têtes de bassin de la Meuse et de l'Oise à vocation agricole orieitée vers l'élevage drainent des eaux de qualité mauvaise en raison d'un pouvoir aÙtoépurateur relativement réduit ayant pour cause l'inéquation apports anthropiqueddébits des cours d'eau.

Pour les mêmes raisons d'apports toujours excessifs par rapport au pouvoir autoépurateur du milieu récèpteur, la Vesle en aval de Reims reste actuellement de très mauvaise qualité vis-à-vis de cette altération, même si l'indice (à 10) peut traduire une tendance, depuis 1999, à l'amélioration

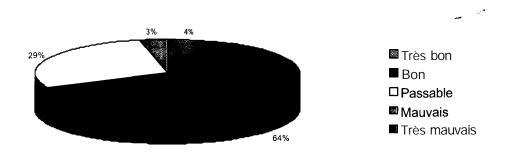
Cette altération demeure le principal facteur limitant pour les potentialités biologiques des cours d'eau et pour l'aquaculture sur l'ensemble de la région.

SEQ EAU MATIERES AZOTEES BASSINS RHIN-MEUSE ET RHONE-MEDITERRANEE-CORSE

QUALITE

très bonne ' Effauvaisa

BASSIN RHIN-MEUSE


Cours d'eau	Station	N° ordre	1997	1998	1999	2000	2001
BASSONCOURT	MEUSE	106500		52	58	48	52
BREUVANNES	FLAMBART	106550	40	55	54	47	52
BOURG STE MARIE	MEU USE	106575	43	60	49	54	57
GONCOURT	MEUSE	106600	39:	52	56	50	55
REMILLY	MEUSE	■■ 5000	43	54	60	66	58
SAPOGNE/MARCHE	MARCHE	■ 15950	60	50	66	66	56
CARIGNAN	CHIERS	■ 16000	49	52	58	54	59
DONCHERY	MEUSE	117000	50	56	60	58	69
VRIGNE MEUSE	VRIGNE	117400		40	40		53
SAUVILLE	BAR	117575	49	56	59	59	59
CHEVEUGES	BAR	117650	51	55	59	60	58
LUMES	MEUSE	■■ 8000	49	51	64	60	60
FRANCHEVILLE	VENCE	■ 8200	45	58	53	60	59
GIRONDELLE	SORMONNE	118300	40	48	50	44	55
REMILLY	AUDRY	■ 8350	41	40	52	44	56
HAUDRECY	THIN	■■ 8450	49	57	59	69	64
BELVAL	SORMONNE	■ 18500	46	52	58	56	57
NOUZONVILLE	GOUTELLE	■8750	48	54	52	58	55
NOUZONVILLE	MEUSE	119000	49	51	60	49	60
HAULME	SEMOIS	120000	50	60	74	60	64
LAIFOUR	MEUSE	121000	51	54	71	66	66
FUMAY	ALYSE	122200	57	55	66	67	72
MONTIGNY/MEUSE	VIROUIN	122800	49	58	59	57	63
HAM/MEUSE	MEUSE	123000	建筑	55	66	58	58
FROMELENNES	HOUILLE	123500	55	58	59	57	58
GIVET	MEUSE	124000	48	54	64	60	62

BASSIN RHONE-MEDITERRANEE-CORSE

Cours d'eau	Station	N° ordre	1997	1998	1999	2000	2001
APANCE	ENFONVELLE	890	58	66	49	58	58
AMANCE	MAIZIERES	1180	56	54	63	63	60
MANCE	PISSELOUP	1190	57	58	60	63	60
SALON	COUBLANC	3950	54	60	60	58	60
VINGEANNE	CUSEY	5682	56	56	201	56	71

MATIERES AZOTEES (hors nitrates)

Répartition des différentes classes de qualité (sur 90 points)

Bilan général pour la Champagne-Ardenne

Comme l'an passé, on observe une qualité bonne à très bonne sur les deux tiers des stations pour cette altération

La mauvaise qualité observée à Nogent en Bassigny reste stable, alors que la station de Vrigne Meuse passe en qualité passable, retrouvant les niveaux de 98 et 99. La très mauvaise qualité observée à ChalonsNesle devient mauvaise avec un indice à 20, ce qui semble confirmer la tendance à un début d'amélioration observé pour l'altération « matières organiques ».

Pour l'ensemble de la région, le tableau présentant les 5 dernières années montre une réelle stabilité du niveau de qualité des différentes stations, les quelques variations observées sont dues à un changement d'indice limité mais passant de part et d'autre des bornes définies pour les différents niveaux.

Cette altération ne remet pas en cause les principaux usages potentiels de l'eau des cours d'eau champardennais.

QUALITE

BASSIN RHIN-MEUSE


Cours d'eau	Station	N° ordre	1997	1998	1999	2000	2001
BASSONCOURT	MEUSE	106500	41	55	47	57	56
BREUVANNES	FLAMBART	106550	43	55	51	58	54
BOURG STE MARIE	MEUSE	106575	43	60	49	54	57
GONCOURT	MEUSE	106600	47	53	55	57	58
REMILLY	MEUSE	115000	52	49	51	53	53
SAPOGNE/MARCHE	MARCHE	115950	60	58	57	59	58
CARIGNAN	CHIERS	116000	47	43	50	52	49
DONCHERY	MEUSE	117000	50	49	50	53	53
VRIGNE MEUSE	VRIGNE	117400	62	64	59	64	60
SAUVILLE	BAR	117575	50	51	52	53	48
CHEVEUGES	BAR	117650	53	52	52	54	50
LUMES	MEUSE	118000	50	50	50	54	53
FRANCHEVILLE	VENCE	118200	54	53	53	53	53
GIRONDELLE	SORMONNE	118300	46	49	54	56	53
REMILLY	AUDRY	118350	48	47	47	48	46
HAUDRECY	THIN	118450	51	49	50	49	50
BELVAL	SORMONNE	118500	55	53	56	55	51
NOUZONVILLE	GOUTELLE	118750	60	62	61	68	66
NOUZONVILLE	MEUSE	119000	53	49	52	56	52
HAULME	SEMOIS	120000	58	56	58	59	60
LAIFOUR	MEUSE	121000	54	51	54	57	56
FUMAY	ALYSE	122200	76	76	76	78	77 ~
MONTIGNY/MEUSE	VIROUIN	122800	56	55	56	59	57
HAM/MEUSE	MEUSE	123000	53	51	53	57	57
FROMELENNES	HOUILLE	123500	57	58	58	61	62
GIVET	MEUSE	124000	54	54	51	54	57

BASSIN RHONE-MEDI TERRANEE-CORSE

Cours d'eau	Station	N° ordre	1997	1998	1999	2000	2001
APANCE	ENFONVELLE	890	57	55	56	46	56
AMANCE	MAIZIERES	1180	59	47	63	58	55
MANCE	PISSELOUP	1190	53	54	70	52	61
SALON	COUBLANC	3950	49	54	58	59	56
VINGEANNE	CUSEY	5682	42		43	49	46

NITRATES

Répartition des différentes classes de qualité (sur 90 points)

Bilan général pour la Champagne-Ardenne

Cette altération est le facteur le plus pénalisant de la qualité des eaux superficielles de Champagne-Ardenne puisque seulement 8% des cours d'eau, situés principalement dans le nord des Ardennes, sont de bonne qualité vis-âvis des nitrates.

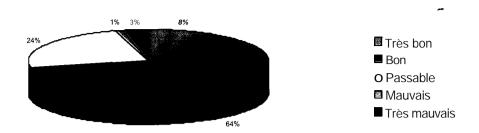
Plus des trois quarts des points de suivi ont tout au plus une qualité passable.

La classe mauvaise qualité concerne 21% des points de mesure qui sont pratiquement tous situés dans les zones de grande culture de la Champagne crayeuse.

Ce paramètre constitue le principal facteur de remise en cause plus ou moins prononcée de la fonction biologique ou des principaux usages potentiels des eaux naturelles superficielles, soit par effet direct, soit par effet indirect (eutrophisation).

QUALITE très bonne bonne passable hauvelse

BASSIN RHIN-MEUSE


Cours d'eau	Station	N'ordre	1997	1998	1999	2000	2001
BASSONCOURT	MEUSE	106500		- 14 5 °	49	48	
BREUVANNES	FLAMBART	106550	54	49	49	51	59
BOURG STE MARIE	MEUSE	106575		49	54	55	54
GONCOURT	MEUSE	106600				ente Parent	
REMILLY	MEUSE	115000	68	58	61	62	52
SAPOGNE/MARCHE	MARCHE	115950	65	59	58	65	67
CARIGNAN	CHIERS	116000	56	51	57	54	50
DONCHERY	MEUSE	117000	61	56	59	56	62
VRIGNE MEUSE	VRIGNE	117400			51	50	48
SAUVILLE	BAR	■ 17575	61	60	57	70	54
CHEVEUGES	BAR	■■ 7650	68	65	56	68	55
LUMES	MEUSE	■ ■ 8000	59	55	60	53	61
FRANCHEVILLE	VENCE	118200	64	61	42	63	58
GIRONDELLE	SORMONNE	118300	65	50	59	60	54
REMILLY	AUDRY	118350		53	54	59	58
HAUDRECY	THIN	■■ 8450	66	69	59	72	70
BELVAL	SORMONNE	■■ 8500	55	54	57	65	60
NOUZONVILLE	GOUTELLE	■■8750	48	53	58	67	64
NOUZONVILLE	MEUSE	119000	55	53	57	59	61
HAULME	SEMOIS	120000	64	49	56	67	71
MONTIGNY/MEUSE	VIROUIN	122800	61	54	57	58	63
HAM/MEUSE	MEUSE	123000	48	54	60	59	60
FROMELENNES	HOUILLE	123500	63	59	73	75	63
GIVET	MEUSE	124000	64	57	60	63	53

BASSIN RHONE-MEDITERRANEE-CORSE

Cours d'eau	Station	N° ordre	1997	1998	1999	2000	2001
APANCE	ENFONVELLE	890	48	61	50	67	67
AMANCE	MAIZIERES	1180	55	56	60	59	57
MANCE	PISSELOUP	1190	56	59	62	58	53
SALON	COUBLANC	3950	54	56	59	63	58
VINGEANNE	CUSEY	5682	72	67		69	72

MATIERES PHOSPHOREES

Répartition des différentes classes de qualité (sur 90 points)

Bilan général pour la Champagne-Ardenne

Cette altération d'origine anthropique, plutôt urbaine, présente des niveaux assez contrastés sur l'ensemble du territoire champardennais.

Les hauts bassins de l'Aube et de la Seine, peu concernés par ce type de rejet conservent d'une année à l'autre un très bon niveau de qualité.

La basse vallée de l'Aube et la majeure partie du bassin de la Marne ont une qualité bonne vis-&vis de cette altération.

Si le bassin de la Meuse dans les Ardennes draine des eaux, sur l'axe principal ou les affluents, de qualité passable à bonne, la qualité apparaît cette année plus médiocre sur les stations haut-marnaises avec une qualité passable à très mauvaise. Dans les Ardennes, cette année, de nombreuses stations connaissent un changement de qualité par rapport à l'année précédente. Les fluctuations entre les classes bonne et passable, en amélioration ou en dégradation s'équilibrent.

La Seine en aval duBarséquoinais, le bassin de l'Aisne et les cours d'eau du Bassigny sont relativement influencés et drainent des eaux de classe passable.

La Vesle à ChalonsNesle, la Suize à Chaumont et la Meuse à Bassoncourt etGoncourt soumis à l'influence d'importants apports urbains ou d'industries agro-alimentaires présentent des eaux de mauvaise voire très mauvaise qualité vis-&vis de cette altération.

La qualité des eaux de la région Champagne-Ardenne en regard de cette altération paraît en légère amélioration cette année par rapport à 2000 avec 72 % de stations en qualité bonne à très bonne contre 61 %.

SEQ EAU ALTERATION PHYTOPLANCTON BASSINS RHIN-MEUSE ET RHONE-MEDITERRANEE-CORSE

QUALITE

très bonne passable mativaire

BASSIN RHIN-MEUSE

Cours d'eau	Station	N° ordre	1997	1998	1999	2000	2001
BASSONCOURT	MEUSE	106500	68	61	56	74	59
BREUVANNES	FLAMBART	106550					
BOURG STE MARIE	MEUSE	106575			,		
GONCOURT	MEUSE	106600				78	50
REMILLY	MEUSE	115000	64	40	55	60	68
SAPOGNE/MARCHE	MARCHE	115950					
CARIGNAN	CHIERS	116000		11-11			
DONCHERY	MEUSE	117000	52	64	40	67	68
VRIGNE MEUSE	VRIGNE	117400					
SAUVILLE	BAR	117575					
CHEVEUGES	BAR	117650	71	64	43	61	67
LUMES	MEUSE	118000	55	60	2.7	61	52
FRANCHEVILLE	VENCE	118200					
GIRONDELLE	SORMONNE	118300					
REMILLY	AUDRY	118350					
HAUDRECY	THIN	118450					
BELVAL	SORMONNE	118500					
NOUZONVILLE	GOUTELLE	118750					
NOUZONVILLE	MEUSE	119000	46	59	68	69	72
HAULME	SEMOIS	120000	3000	48	36	58	56
LAIFOUR	MEUSE	121000					
FUMAY	ALYSE	122200					
MONTIGNY/MEUSE	VIROUIN	122800					
HAM/MEUSE	MEUSE	123000	5/ S	59	58	56	59
FROMELENNES	HOUILLE	123500					
GIVET	MEUSE	124000	選手 30 ^円 巻	64	56	43	61

BASSIN RHONE-MEDITERRANEE-CORSE

Cours d'eau	Station	N° ordre	1997	1998	1999	2000	2001
APANCE	ENFONVELLE	890	76			78	76
AMANCE	MAIZIERES	1180	72			68	73
MANCE	PISSELOUP	1190	72			72	72
SALON	COUBLANC	3950	61			71	76
VINGEANNE	CUSEY	5682	22			48	60

PHYTOPLANCTON

Répartition des différentes classes de qualité (sur 48 points")

* : Seuls les grands cours d'eau dont les caracéristiques morphodynamiques sont propices au développement de phytoplancton sont soumis au dosage de la chlorophylle.

Bilan général pour la Champagne-Ardenne

Les conditions hydroclimatiques de l'été 2001, comme pour l'année précédente, fréquentes journées pluvieuses ayant maintenu des débits et des vitesses de courant assez élevés, température de l'air peu favorable à l'échauffement de l'eau ont réduit les développements d'algues planctoniques. Les résultats de mesure sont d'une qualité bonne sur près de 80% des points suivis.

Sur certains tronçons à courant lent des grands axes hydrauliques sous influence de barrage créant retenue (Meuse, Seine, Marne, Blaise) ou à faible pente naturelle (Aube, Semois, Vingeanne) une qualité tout juste passable perdure.

REGION CHAMPAGNE-ARDENNE

Qualité biologique des eaux superficielles 2001

. . .

La majorité des 90 points de suivi annuel de la qualité des eaux superficielles en Champagne-Ardenne fait l'objet d'une analyse biologique annuelle. Ce suivi comprend une étude de la macrofaune benthique selon les protocoles de l'Indice Biologique Global Normalisé (IBGN) pour les petits cours d'eau ou de la méthode expérimentale de l'Indice Biologique Global adapté aux grands cours d'eau (IBGA) pour certaines staions aval des grands axes hydrauliques et/ou un contrôle sur les populations de diatomées selon la méthode normalisée de l'Indice Biologique Diatomées (LBD).

Ces suivis sont, sur certains secteurs, complètés par des inventaires piscicoles selon un protocole expérimental devant déboucher sur un Indice Biologique Poissons (IBP) soumis à normalisation.

L'ensemble des ces indices devrait être pris en compte dans le volet biologique du système d'évaluation de la qualité des cours d'eau, volet en cours de finalisation.

Le présent document ne prend en compte que les données recueillies sur les invertébrés par la méthode IBGN et IBGA pourquelques points de Seine-Normandie. Les résultats des autres approches font l'objet de publications spécifiques généralement au niveau de l'ensemble du bassin soit par les Agences (IBD) soit par le Conseil Supérieur de la Pêche (IBP).

Les tableaux résultats des pages suivantes présentent, pour les dernières années, les valeurs indiciaires IBG avant 1993 et IBGN depuis 1993 ainsi que les éléments de calcul, nombre de taxons et groupe faunistique indicateur, de ces indices.

Les conditions hydro-climatiques spécifiques à l'année 2001 ont maintenu un niveau d'eau trop haut sur 5 stations, ce qui n'a pas permis de réaliser les prélèvements biologiques. Pour les autres points, les conditions de prélèvement étaient parfois en limite d'applicabilité de la méthode LBGN, en particulier en matière de stabilité des conditions hydrauliques.

Comme toujours, on relève des fluctuations plus ou moins importantes des biocénoses relevées, qui entraînent parfois un changement de niveau de qualité. Ces modifications s'avèrent toutefois d'importance assez marginale tant en « amélioration» qu'en « dégradation». Ces fluctuations annuelles traduisent, comme à l'habituel, une certaine instabilité biologique des sites plutôt qu'une véritable évolution de la qualité générale.

Cette instabilité est principalement liée aux modifications du cycle d'évolution annuel des taxons plus ou moins décalé en raison des conditions climatiques influant les cycles de développement des larves liés à la température de l'eau ou à la croissance des végétaux aquatiques qui constituent un élément essenciel de la diversité des habitats benthiques.

L'année 2001 se caractérise par une augmentation du nombre de stations dans les classes de qualité extrème : excellente qualité (7) ou mauvaise qualité (6) par rapport aux années antérieures.

Ce constat n'est toutefois pas significatif puique pour la majorité des stations, ces situations ont déjà été constatées antérieurement de manière plus ou moins épisodique.